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AMITABH VARSHNEY. Parallel Radiosity Techniques for Mesh-Connected SIMD

Computers (Under the direction of Professor Frederick P. Brooks, Jr.)

Abstract

This thesis investigates parallel radiosity techniques for highly-parallel, mesh-

connected SIMD computers. The approaches studies differ along the two orthogonal

dimensions: the method of sampling - by ray-casting or by environment-projection -

and the method of mapping of objects to processors - by object-space-based meth-

ods or by a balanced-load method. The environment-projection approach has been

observed to perform better than the ray-casting approaches. For the dataset studied.

the balanced-load method appears promising. Spatially subdividing the dataset with-

out taking the potential light interactions into account has been observed to violate

the locality property of radiosity. This suggests that object-space-based methods for

radiosity must take visibility into account during subdivision to achieve any speedups

based on exploiting the locality property of radiosity.

This thesis also investigates the reuse patterns of form-factors in perfectly diffuse

environments during radiosity iterations. Results indicate that reuse is sparse even

when significant convergence is achieved.

Implementations of these approaches have been done on a 4K processor MasPar

MP- 1.
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Chapter 1

Overview and Results

This thiesis research has been motivated by the current lengthy radiosity computation

times in the UN C Walkthrough project axud by a personal desire to better understand

the process of mapping computationally intensive problems on to the newly emerging

class of highly parallel machines. To place this thesis in itz proper pe-spective. it

would serve well to start with an overview of the Walkthrough project and the role

of radiosity in it.

1.1 The Walkthrough Project

The UNC Walkthrough Project aims at development of a system for creating virtual

building environments. This is intended to help architects and their clients to ex-

plore a proposed building design prior to its construction, correcting problems on the

computer instead of in concrete [Brooks88], [Airey9Ob].

Walkthrough is in a class of virtual-worlds systems in which users can actually

(though maybe only later) make comparisons with the real world, and thus directly

verify the veracity of the simulation. With the reality serving as a touchstone, one of

the primary goals of this project is to strive for realism. This realism is sought along

four different dimensions - realistic images, real-time update ratcs, real models and

an intuitive interface. Efforts along an, of these dimensions, oppose those along the

other dimensions, making this project a challenging one.



Realistic Images: The natural world is everywhere dense with complexity.

The real man-made world however is less so. This realization has fostered the efforts

to first tackle the problem of realistic rendering of the man-made objects. Using a

global diffuse illumination model of radiosity, a respectable level of realism in virtual

building models can be achieved. The radiosity method realistically simulates the

interaction of light between diffuse surfaces. Walkthrough uses this to enhance visual

realism. Another technique employed to increase realism is the use of procedural

textures. Having textures for bricks, wood, ceiling tiles etc. adds a whole new level of

detail to the images. A daylight model is used for displaying the effects of a diffused

sunlight.

Real-Time Update Rates: Interactive update rates are crucial for the illusion

of virtual building to work [Airey9Obl. This however is at odds with the aim of realistic

images outlined above. Using high-end graphics machines, such as Pixel-Planes. for

rendering partially solves this problem. Pre-computation of potentially visible sets

to restrict the number of polygons that have to be transformed and rendered for any

viewpoint [Airey90a] further helps here.

Real Models: To study first-hand the problems and challenges of simulating

real buildings, Walkthrough uses models built from the architectural drawings of ac-

tual buildings. This affords an opportunity to work on sufficiently complicated and

detailed models and offers a benchmark (the actual building once it is built) with

which to compare qualitatively the places where the virtual-building simulation suc-

ceeds and the places where it falls short. A commercial software package, AutoCAD,

is used as the modeling tool. Being designed for architectural description, AutoCAD

has some specialized facilities for model maintaining and model refining. Further.

since many architects use it, its use offers opportunities for the exchange of building

datasets.

Intuitive Interface: In any virtual-worlds system, the degree to which a user

can interact naturally witn the virtual world plays an important role in determining its

effectiveness. Ideally, this man-machine interface should afford as easy and intuitive

an interaction as with the real object. For interacting with Walkthrough. different
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users have differing preferences. For a client who does not have sufficient experience

in visualization of the dimensions of the building from its blueprints, actual pacing

about the virtual-building would be more appropriate. For an architect, who already

has a good feel for the physical size of the building, an interface that would enable

him to quickly fly-through the model would be better. Keeping these in mind, the

Walkthrough interface has provisions for using head-mounted displays, a treadmill.

joysticks, and a bicycle.

1.2 The Need for Parallel Radiosity

Radiosity is a global-illumination model for modeling the interaction of light between

diffuse surfaces. Pioneered at Cornell University [Goral84], this method has gained

widespread acceptance in the last few years for providing a diffuse lighting model for

architectural datasets. The reasons behind this are twofold. Firstly, it realistically

simulates such diffuse lighting effects as soft shadows and the diffuse inter-reflections

typically observed inside buildings and secondly, since the illumination solution thus

computed is view-independent, it allows interactive viewing of the dataset once the

process has finished. The property that the solution computed is view-independent

gives this model an advantage over other global-illumination models. Designs of

proposed buildings can thus be generated from the architectural drawings, radiosity

solutions for these computed, and the building designs evaluated for usability, traffic,

and aesthetic appeal, by navigating through these virtual buildings. Any shortcom-

ings can then be corrected and new ideas tested out in the design phase itself. This

design cycle can be iterated till a satisfactory result has been obtained. The design

cycle outlined here appears in the Fig 1.1. Details about the radiosity algorithm can

be found in Chapter 2.
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Figure 1.1 The Walkthrough Design Cycle

The radiosity method however is a computationally intensive process and generally

requires hours of CPU time on standard workstations for moderately large datasets

(on the order of ten thousand polygons). This then becomes the major bottleneck
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in the design cycle of an architectural model as outlined above. As radiosity-based

shading depends on the model geometry, any change to the model necessitates re-

computation of the radiosity solution - a very time-consuming task at present. This

discourages free experimentation with the model and makes the model-modification

process a conservative one. Right now, model modification is done by accumulating

changes to the model over a period of days, if not weeks, and then the radiosity

solution for it is computed over another one or two days. This is not to criticize

the existing implementation, but just to give a feel for the amount of computation

involved. In fact, the existing sequential implementation that we have is quite fast

as compared to some other existing sequential implementations that we have come

across. This speedup is gained partly by using ingenious data structures which ex-

ploit the property that most polygons in an architectural model are axially oriented,

partly by using adaptive environment sampling techniques [Airey89], and partly from

trading off lighting-model accuracy for speed.

Reduction of time in the radiosity computation stage would help bring down

the design cycle times and allow for greater flexibility in experimentation with such

models. The ability to freely experiment and learn in the process has been the

motivating force in paying attention to the generation of such virtual environments

in the first place.

With the availability of highly-parallel computers at modest prices and their ex-

pected widespread acceptance in the near future, it appears desirable and even nec-

essary to try and devise methods to map such intensive applications on them. There

have been documented efforts in the literature that deal with the parallelization of ra-

diosity on shared-memory MIMD multiprocessors in which the number of processors

is in the order of tens. However, this problem has not been studied for the emerging

class of commercially available, highly-parallel SIMD machines in which the number

of processors is in the thousands. Fine-grained parallelization of the radiosity method

appears promising as an attempt to reduce radiosity solution times and thus has the

potential to make the whole design process a more meaningful one.
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The sections 1.3 and 1.4 are meant to serve as an extended abstract of this thesis,

outlining the approaches and the results in brief. Readers wishing to get a detailed

treatment could just skim through these sections and come back to them after study-

ing Chapters 2 through 5.

1.3 Overview of Approaches Considered

In the design of parallel software, the first concern should be the identification and

expluitation of parallelism. The type of parallelism being used depends on the target

parallel architecture. We are considering radiosity algorithms for a mesh-connected

SIMD architecture. For execution of the radiosity algorithm on this to be efficient, it

should give due consideration to these features of the architecture.

Our implementations for the radiosity approaches were on the 4K processor Mas-

Par MP-1 which has a mesh-connected SIMD architecture. The distributed-memory

architecture of the MasPar MP-1 data parallel unit (DPU), with 16Kbytes of memory

per processing element rules out a per-node duplication of anything but small datasets

of around 100 polygons. Distributed memory also dictates that dynamic changes in

the mapping of polygons to the processors be minimized. For unlike in a shared-

memory system, where this change need only be reflected in a processor-polygon

mapping table, in a distributed-memory system this would result in an increased in-

terprocessor communication either due to actual movement of polygons or because of

remote accessing of polygons across processor boundaries.

The fact that the target architecture is SIMD implies that for efficient utilization

of parallel processors, the special cases to be handled be minimized. For every special

case being executed, all those processors that do not qualify to execute that step are

idle and thus lower the effective amount of processing being done. This realization

goes a long way in helping design more efficient algorithms for SIMD machines.
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1.3.1 Conceptual Overview

The basic radiosity method is an iterative one in which each iteration consists of

two phases: form factor calculation and energy distribution. Looking at it from the

viewpoint of an iterative solution of a linear system of equations Ax = b, one can find

corresponding stages in the Gauss-Seidel method. The form factor calculation stage

corresponds to the computation of one row, say k, of coefficients in the matrix A. The

energy distribution stage corresponds to solving for Xk, using the previous values of

other x,, i 0 k. Of these two phases, previous studies have indicated that as much as

90% of the time is taken up by the first phase comprising calculation of the form-factor

coefficient matrix [Cohen86]. Thus, special attention needs to be paid to calculation

of form-factors. The form-factor calculation techniques that we have studied can be

divided into two main categories: ray-casting methods and environment-projection

methods.

Ray-Casting Methods fire off rays to sample the environment and thus deter-

mine the visibility of polygons. This has been a popular technique for sequential

implementations as it gives the freedom of selecting good directions and amount of

energy to be shot per ray.

Environment-Projection Methods involve projecting the polygons of the en-

vironment onto the shooting polygon and then z-buffering to find the visible polygons.

These have the advantage of being able to use the z-buffer hardware which is available

on some of the newer special-purpose graphics machines [Baum9O].

Orthogonal to form-factor calculation by ray-casting or environment-projection is

the issue of mapping polygons to processors. Here again we have considered methods

that fall in two categories: Object-Space methods and Balanced-Load methods .

Object-Space Methods axe methods in which the processor-polygon mappings

are done on the basis of the geometrical distribution of the polygons. The entire

dataset space is subdivided into mutually exclusive and collectively exhaustive vol-

umes of space. These volume elements are assigned to the processors in some fixed

order. The greatest problem here is ensuring load balancing. If explicit load bal-

ancing is not done, the polygonal dataset is often unbalanced across the processors.
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leading to waste of resources in terms of idle time of the processors that received

ligh.er polygon allocations. If load balancing is attempted by modifying the bound-

aries of the volume elements then the shapes of the volume elements rapidly become

complicated, making it more costly to detect their boundaries [Dipp 84]. However.

the advantage of these methods is that for a ray-casting approach any given ray only

has to be intersected with a restricted set of polygons.

Balanced-Load Methods treat load balancing across processors as their first

priority. Thus, these methods assign the polygons to the processors to ensure optimal

load balancing. The advantage clearly is the minimization of the processor idle time.

However, in absence of any structuring of data, these can be expected to perform

poorly for applications where exploitation of geometrical proximity of input polygons

is crucial to acceleration of the algorithm.

Conceptually then, the space of approaches ccnsidered for the problem appears

as shown in Fig 1.2.

Ray-Casting Environment-Projection

Balanced-Load Approach A Approach B

Object-Space Approach C Approach D

Figure 1.2 The Conceptual Approaches

1.3.2 Implementation Overview

Of the four conceptual approaches outlined above, approaches A and C were partially

implemented. On the basis of the preliminary results from these, approach B was fully

implemented, and approach D was not implemented.
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Approach A

In this approach, polygons are spread out evenly over all the processors on the mesh.

The progressive refinement radiosity approach has been implemented. Thus, in each

iteration a shooting polygon is determined which has the maximum unshot energy

among all the polygons. Rays are then cast one at a time from this shooting polygon

to sample the environment and transfer energy to the intersecting polygon. The

orientation of these rays is chosen such that each of these carries an equal amount of

energy. Details on computation of these orientations are given in [Airey89]. The ray

that is to be fired is made available to all processors. Each processor then intersects

this ray with the list of polygons which it has. The minimum distance of intersection

for this ray is computed locally by each processor over all the polygons it has. After

this, a global minimum over all these local minimum distances is computed. This

gives the intersection distance for the ray. The polygon which had intersected this

ray is then found. Once the intersected polygon is found, the energy being carried

by the ray is transferred to this polygon. This process is repeated for all the rays

from the shooting polygon. After this, the iteration repeats for the next shooting

polygon. These iterations continue, till the unshot energy with the most recently

selected shooting polygon is below a prespecified threshold value.

Approach B

Here again polygons are spread out equally over the DPU. The shooting polygon is

calculated as in Approach A. This is then copied to the limited shared memory on

the controller (ACU). All the polygons access this and compute their projection in

parallel onto the projection plane of this shooting polygon. The projection plane for

our implementation is a single plane that is able to catch 90% of the light energy

emanating from the energy shooting polygon. This is described in greater details in

[Recker90] and in Chapter 2 of this thesis. The projections are then z-buffered and

scan-converted on the projection plane which is implemented to span the entire DPU

array. Scan conversion itself can be done either globally (under the direct control of

the PE which contains the polygon being scan converted), or locally (by neighbor

9



PEs). Both of these strategies have been compared in implementation. In contrast

to approach A, where the sampling was being done from the shooting patch, this

approach samples from the environment to the shooting patch. This guarantees that

within an error tolerance of the resolution of the projection plane, no polygons will

be missed in form-factor calculations.

Approach C

in the implementation of the object space based proccssor-polygon mapping, the

spatial subdivision was done to a global grid that was orthogonally adjusted to provide

as good a load balance as possible. A hybrid approach of processor-polygon mapping

was tried in which the model was divided up into uniform global cuboidal cells. Each

cell was mapped onto a whole row of the DPU array. Within each row of PEs.

balanced load mapping was done, while across PE rows object space mapping was

done. Thus, while each row of the DPU array was balanced, the columns were not.

A ray-casting method was studied for this approach and results obtained for this

indicated a very high level of interprocess communication requirements. These are

summarized in Section 1.4 below.

Approach D

The initial load balancing results that were obtained from Approach C were quite

discouraging. They demonstrated that there was a high degree of load imbalance and

a high percentage of radiosity interactions were actually directed outside of the local

cells (refer section 1.4). This suggested that attempts to subdivide the dataset in

the manner done for Approach C to localize radiosity interactions would prove futile.

Consequently no further efforts in investigating this approach were invested.

For further details on all of these approaches, the reader is referred to Chapter 4.

10



1.4 Results

The approaches A and B were tested out on a 3959 patch model of the dataset

Sitterson 365 office (modeled by John Alspaugh).

In this section by the phrase x% convergence I mean the state of the environment

when the brightest shooting patch in it has a delta-radiosity that is x% of the shooting

radiosity for the first iteration.

Implementing approach A on the MasPar MP-1, the average time for one inter-

section cycle (intersection of one ray with all the polygons) for the 3959 patch dataset

is 4.3 ms. Thus, the effective time for a single ray-polygon intersection is 1.13 ,usecs.

The total time for the patch radiosities to converge to their respective final values

across the radiosity iterations is dominated by this time.

In approach B, a single plane of side-to-height ratio of 3 has been chosen as it

permits 90% of the shooting patch's radiosity to be shot. Comparisons were made

across different resolutions of the single plane. The following times were observed for

the Sitterson 365 office model. For a single plane with 64 x 64 resolution, the average

time per iteration is 0.24 secs. For a single-plane with 128 x 128 resolution, the

average time per iteration is 0.45 secs. For a single-plane with 256 x 256 resolution,

the average time per iteration is 2.15 secs. These results are for a local scan-conversion

technique for generating the item-buffers.

If the number of rays to be fired per shooting polygon for approach A are n, then

one iteration of approach B corresponds to n intersection cycles of approach A. Since

the time for a 128 x 128 single-plane for approach B is 0.45 secs, it allows approach

A to fire up to 100 rays (time per ray intersection cycle is 4.5 ms), before approach

A starts losing out. Thus approach A is an order of magnitude slower.

A global positioning method for scan-conversion was also attempted with approach

B, but here again the geometry dependency made load balancing a concern. For a

4K resolution single-plane with a side-to-height ratio of 1, the total number of tuples

generated is 27K with a maximum of 1.4K tuples at a orocessor and a minimum of 0.

All these tuples need to be z-buffered on the processor where they fall, making this a

11



highly-imbalanced operation.

While studying approach B, tests were also done to determine what fraction of the

form-factors are reused. This was done with a view to storing the calculated form-

factors to avoid their recomputation. Unfortunately, most of the reuse in form-factors

starts occurring quite late in the convergence. Thus, for the 3959 patch Sitterson

365 office model, only 6 form-factors are reused in the first 177 iterations in which

convergence to 97.2% takes place. It is only later that a high fraction of form-factors

begins to get reused, but by then the convergence is almost complete.

Approach C was tested on a 8 x 8 x 1 subdivided model of the Sitterson 365 office.

Geometry based distribution of these with orthogonal grid balancing into 64 cells

yielded a poor load balance, with a minimum of 6 and a maximum of 208 polygons.

Further refinement using subdivision and redistribution within the same DPU ray.

brought down this imbalance to a minimum of 6 and maximum of 154. Using this data

in the approach as outlined in Section 1.3.2 and firing one ray per polygon (along the

polygon normal), it was observed that only 1983 rays intersect the polygons within

the same cell, while 1353 do not and thus have to be passed onto other DPU rows.

These 40% of the rays will contribute to a high inter-row communication and would

also need to recompute the intersec+ions with the polygons on the row where they

reach. The problems of load imbalance and the expected high amount of interprocess

communication suggested that we invest our effort elsewhere.

Whereas approach A requires fewer iterations, approach B has a smaller time per

iteration. Overall, approach B is a winner in terms of total time required to achieve

a given convergence.

Three levels of possible parallelism in radiosity have also been identified in this

thesis. Thus, depending on the number of processors which are available one could

choose to parallelize at different levels.

12



1.5 Guide to the Chapters

This chapter provided a brief overview of the problem investigated, the approaches

taken, and the results that have been obtained. This chapter is meant to serve as an

extended abstract, presenting the key aspects of the thesis in a nutshell.

Chapter 2 describes the radiosity method in general. This is followed by a discus-

sion of issues relevant to its parallelization.

Chapter 3 reviews the parallel radiosity work that has been done in literature so

far. Since computation of form-factors is often done using a ray-casting approach. par-

allel ray-tracing techniques can be used for this purpose. Therefore, a brief overview

of parallel ray-tracing methods has also been done here.

Chapter 4 is devoted to the description of the radiosity algorithms and their

implementations on the MasPar MP-1. This chapter discusses the various approaches

that have been considered and the results that they yielded. A brief overview of the

MasPar MP-1 is also provided here.

Chapter 5 discusses the possible extensions to this work.

Appendix A contains the source code listing of the implementation.

13



Chapter 2

The Radiosity Method

The radiosity method models the interaction of light between diffusely-reflecting sur-

faces. One of the strongest properties of this global-illumination model is the view-

independent solution that this provides. This permits viewing of a geometric dataset

at interactive rates from any viewpoint and direction, once the solution has been

computed. Introduced from thermal engineering to computer graphics by Goral et

al.[Goral84], this method realistically simulates diffuse lighting effects such as soft

shadows and the diffuse inter-reflections. Such lighting effects are commonly found

in building interiors, where most of the surfaces are diffuse reflectors and emitters.

In this chapter, we will present an overview of the radiosity method, the bottlenecks

involved, and an outline of stages in it that can be paxallelized.

2.1 Overview

Radiosity Bj for a surface j is defined as the total rate at which radiant energy leaves

that surface in terms of energy per unit time and per unit area [Goral84].

This flux Bj being emitted from the surface j is composed of two components:

(i) The rate of direct energy emission Ej from the surface j per unit time and per

unit area.

(ii) The rate of reflected energy from the surface j per unit time and per unit area.

If the reflectivity of the surface is p, and the radiant energy incident at the surface j



per unit time and per unit area is Hi, then this rate of reflected eaergy is p.1H1j.

The radiosity equation for surface j is therefore:

B, = E,+ p, H, (2.1)

If it is assumed that the environment under consideration

(i) is composed of only diffuse surfaces (say n in number) and

(ii) is closed in the sense that whatever flux is emitted from one surface is incident

on one or more other surfaces within the environment ,

then the total incident flux at a surface j can be computed as follows:

n

Hj= ZBjFj (2.2)
i=1

F] is the forr-factor for surface i with respect to surface j. This denotes the

fraction of radiant energy leaving surface i and incident on surface J. It is usually

defined as the solid angle that the visible parr of surface i subtends from the centroid

of surface j divided by 27r.

Equation 2.1 can now be written as:

Bj =Ej+pj BiF, for j=1,n (2.3)
i=1

This is summarized in fig 2.1.

$~urface jI
ie

Figure 2.1 Interactions at Surface j

This yields a system of n linear simultaneous equations in n unknowns B.. The

F, are determined from the geometry of the environment and E, the emittances of
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the light sources in the environment, are assumed given. This system is shown in fig

2.2.

-1F. . . . . .  F1  B1
1- pF 1 - p, F2.. ....... . Fin B

n n2......

-pF i- p F B E

PnFn - On  F2  I- Fn B _E

Figure 2.2 The Radiosity System of Equations

An exact solution of this system, by methods such as Gaussian elimination, re-

quires O(n 2 ) space and is of O(n 3 ) complexity, making it cumbersome to use for even

small datasets (n of the order of hundreds). In most real applications n is of the or-

der of thousands. The coefficient matrix being strictly diagonally dominant 1 (if the

participating surfaces are assumed to be planar F,, = 0 for all i ), iterative techniques

such as the Gauss-Seidel method fare much better for this system. In the progressive

refinement approach [Cohen881, this solution is accelerated by choosing the variables

B. to be solved in the order of their contribution to the environment. This is the same

as the notion of pivoting to move the bigger values to the upper left corner of the

matrix to be solved for at each iteration. Thus, brightest surfaces are used earliest in

the solution, so that the convergence to the exact solution is rapid in the initial stages.

The time for convergence to an acceptable solution has been shown to be linear in the

number of surfaces by using this approach [Cohen88]. The O(n2 ) space requirements

for storing the coefficient matrix of this system are done away with by computing

the form-factors on the fly [Cohen88]. Viewing this approach from the viewpoint of

energy distribution, at the beginning of each iteration the polygon with maximum

1The diagonal element is greater than the sum of other elements that lie either along its row or

along its column.
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energy, say i is chosen as the shooting polygon. The amount of energy with this

polygon is referred to as the unshot energy for the shooting polygon. This energy is

added to the unshot energies of all other polygons j, based on the form-factor values

Fj.

Calculation of form-factors is done either by using analytical methods or, more

commonly, by using sampling methods. The latter approach offers the flexibility

of varying the speed of computation by choosing the accuracy desired. The overall

convergence to a result within some prespecified tolerance can be accelerated by

suitably trading-off accuracy for speed as the computation proceeds.

The form-factor Fij is equal to the fraction of the base of a unit-radius hemisphere

centered on surface j that is covered by the projection of surface i on that hemisphere

[CohenS5]. The fig 2.3 adapted from that paper explains this.

F area of projection of i on base

ii area of base

Figure 2.3 The Form-Factor Analog

However, projection of the environment on a quadratic surface, such as a hemi-

sphere, is costly, unless there are special quadratic primitives provided in the machine

hardware (Pixel-Planes 5, for instance, has an ability to render on quadratic surfaces).

Thus. the notion of a hemi-cube was introduced [Cohen85]. A hemi-cube is a five-

sided half cube that fits atop the energy distributing hemisphere to approximate its
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energy distribution effects and at the same time provide planar projection surfaces.

Each surface of the hemi-cube is divided into square pixels. The delta form-factor

Afi, for one of these pixels q is defined as the form-factor between that pixel and

the surface Z. The total form-factor Fj for surface i with respect to the surface j is

the sum of all the delta form-factors of the pixels comprising the hemi-cube for the

surface j which cover the projection of surface i on surface j. This can be specified

as:

Fi= ' Afq V hemi - cube pixels q on j -D = 1 (2.4)
qQ

Here Q is the set of hemi-cube pixels covered by projection of surface i onto hemi-cube.

Hemi-Cube

Figure 2.4 Hemi-Cube and Single Plane for Form-Factor Calculations

A step further in acceleration of form-factor calculation was taken by using the

notion of a single-plane [Recker90]. The idea here is to approximate the effects of

a five-plane unit hemi-cube by a sufficiently large single plane. Depending on how

large this plane is and how much above the shooting polygon it is placed, the ratio of

its side to its height (as shown in fig 2.4), henceforth referred to as the side-to-height

ratio, can be computed. By increasing the side-to-height ratio of this single-plane to

around 3. almost 90% of the energy can be shot [Recker90]. Thus, instead of five

planes on which to project the environment, a single plane of projection can be used

with 90% accuracy. This suffices for most practical applications. For better accuracy
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(and lesser aliasing), the pixels on the single-plane that are near the center should be

of a smaller size, because most of the energy would be expected to be radiated from

here. This follows from the cosine distribution of the energy being radiated from a

diffuse surface. To understand this better, one should refer fig 2.3. The fraction of the

base of the energy-distributing hemisphere that is covered by the projection of a unit

area on the top of the hemisphere would be more than the corresponding fraction for

a unit area located on the side of the hemisphere. This technique of having pixels of

two different resolutions on the single-plane is the modified single-plane algorithm.

Using the ideas in [Airey89], this idea can be extended so that we have the sizes of

pixels on the single-plane of height h such that the areas which they subtend on the

hemisphere of radius h are all equal.

Calculation of form-factor sampling is done in two ways. The first method is by

casting rays from the centers of each of these pixels (on hemi-cube surfaces or on

the single-plane) along the direction vector from the center of the shooting polygon

(which could be jittered). The second method is by projecting the environment on

the projection-surface (planes of the hemi-cube or the single-plane) for the shooting

polygon. The former method, henceforth referred to as the ray-casting method, is the

method of choice for most software implementations. The latter method, henceforth

referred to as the environment-projection method, is preferred for graphics-hardware-

oriented implementations. The reason is that the process of finding the delta form-

factors using this method is quite similar to the process of rasterization of 3-D geom-

etry with hidden surface removal [Baum90]. Thus, the graphics pipeline well-tuned

for this purpose can be used to advantage in calculating the form-factors.

For the purposes of this thesis we will refer to the plane on which the environment

is projected, be it a side of the hemi-cube or the single-plane, as the projection-plane

To enhance realism, one needs to be able to faithfully reproduce the light gradient

across a surface. However, if this gradient is large at some places, then to realistically

simulate light across such a surface, one needs to approximate it by smaller polygons.

Thus, the original polygons are subdivided to get more realistic light gradients. \Ve
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will refer these smaller subdivided polygons by the name patches.

2.2 The Bottleneck

The radiosity process can be subdivided into two main phases: the form-factor cal-

culation phase and the energy-distribution phase. The former corresponds to the

calculation of the coefficient matrix elements Fj in the linear simultaneous system of

equations, and the latter corresponds to its solution. These two phases are concep-

tually distinct; for ease of understanding it is preferable to treat them as such.

These phases are easy to identify in environment-projection implementations

where they remain distinct. However, in ray-casting implementations, these phases

are often tightly interleaved, blurring this distinction. To clarify this further, let us

consider the implementation of the ray-casting approach. Here, the most common

technique is to treat the ray fired from a polygon as laden with a certain amount

of energy that is transferred to the polygon with which the ray intersects. Thus, in

this case the two phases of form-factor computation and energy distribution proceed

hand-in-hand right down to the level of delta form-factor computation. Treating the

identification of the polygon with which the ray intersects as being in the form-factor

computation phase and the energy transfer to the polygon as being in the energy-

distribution phase, it is easy to imagine that it is the form-factor computation stage

which takes up most of the time.

Once the form-factors have been computed, the energy distribution step becomes

trivial. This is supported by statistics from past studies [Cohen85], [Cohen86] which

show that form-factor computation takes up around 90% of the time. The form-

factor computation being the main bottleneck in the radiosity process, faster ways

of calculating this must be found. As will be discussed in the next section, this

stage turns out to be parallelizable, offering a good opportunity to reduce the overall

radiositv solution times.
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2.3 Parallelism

Solution of a system of linear simultaneous equations by a method of successive

displacements is inherently sequential. If viewed in this light, the solution of the

radiosity system of equations using the Gauss-Seidel method is a sequential one. at

least at a macro level. However, there are sub-stages within this overall process that

can be parallelized.

The radiosit. process can be parallelized at the level of form-factor calculations.

As has been mentioned before in Section 2.1, the form-factor Fj is the sum of delta

form-factors Afiq such that Afq = 1. Each of these delta form-factors can be com-

puted in parallel.

If the delta form-factors are computed by using the ray-casting approach. then

the intersection of each ray with the polygons in the environment can be computed

in parallel. The distance from the ray-origin to the intersection point on the polygon

can be computed in parallel for all polygons and then the polygon with the minimum

distance from the ray-origin can be selected as the polygon intersected by the ray.

Apart from these places, parallelism can also be exploited at a macro level, if

one is prepared to move away from the Gauss-Seidel method Using a simultaneous

displacement method for solving the radiosity system of equations, such as the Jacobi

method, one could carry out the solution for every variable in parallel. If a hybrid

approach between the Gauss-Seidel and Jacobi methods is chosen, then that too holds

promise of parallelism. In this approach, a set of k out of a total of n variables are

chosen as the variables to be solved for in the current iteration. Each of these k

variables is solved for in parallel using the values of the previous iteration for all vari-

ables. Then in the next iteration, these new values of k variables are simultaneously

used. This idea, though not explicitly stated in this fashion, is used by Chen in his

distributed radiosity approach [Chen89] (ref subsection 3.1.1).

Selection of the variable in the radiosity system of equations that needs to be

solved next, the shooting polygon, itself can be done in O(log n) time in parallel over

O(n) processors. instead of O(n) time in a sequential method.
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Once the form-factors have been computed, the distribution of energy across all

the polygons can be done in parallel.

To summarize, if we look at the process of radiosity solution as solving of a system

of n linear simultaneous equations Ax - b, then parallelism can be exploited in form-

factor calculations at several levels as shown in Fig. 2.5.

[The Radiosiry Syst ]

These can be solved for

Low parallelism X ........ in parallel in groups of k.

x..=..x Z, F F F.

L2w p r a l e2s ..

F F F . ... F.... .F- These can be computed
I F 2j 3j ... nj in parallel.

IThe delta form-factors can
Hi gh ParalelisF . F. k kbe computed in parallel.High Parallelism . ... ;~

Figure 2.5 Parallelism in Radiosity

These levels are:

(i) Finding the new values of some k variables in parallel in each iteration. k = 1 for

Gauss-Seidel, k = n for Jacobi, and 1 < k < n for the hybrid method outlined above.

(ii) Computing the rows of the coefficient matrix A in parallel.

(iii) Computing the value of each element in a row of the coefficient matrix A by

parallel methods.
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These three levels of parallelism are nested. One can go down these levels with an
increasing availability of processors to exploit increasing parallelism. Since computa-

tion of the form-factors takes up almost 90% of the time [Cohen85], [Cohen86], more
effort should be invested more in exploiting parallelism at the levels (ii) and (iii) as

outlined above.
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Chapter 3

Previous Work

Since the introduction of radiosity as a global illumination method in 1984 [GoralS4].

various attempts have been made to improve and accelerate it. Most of them. !Co-

hen85], [Cohen86], [Cohen88J, [Airey89], [Chen90] to name a few, have been presented

with uniprocessor environments in mind. Only recently has attention been focussed

on solving this problem in multiprocessor environments. This chapter provides a brief

overview of the previous work done in parallel radiosity.

Form-factor calculation being computationally the most significant phase of the

radiosity method, and ray-casting being a popular approach in this phase, one can

only expect that most of the available parallel ray-tracing techniques will be of use in

the endeavors to parallelize radiosity. Taking this into account, this chapter also pro-

vides an overview of some parallel ray-tracing techniques that have been investigated

in the past.

3.1 Parallel Radiosity

Parallel radiosity is a relatively new field, no more than three years old. Most of

the attempts at radiosity parallelization, that have been documented in the literature

so far, have focussed either on loosely-coupled multiprocessing or on coarse-grained

parallelization. This section presents a synopsis of the work that has been done in

the past in this area.



3.1.1 Radiosity on Loosely-Coupled Systems

Beginnings in parallelization of radiosity were first made in 1989 when Chen [Chen89]

exploited coarse-grain parallelism over a network of Hewlett-Packard 835 worksta-

tions via ethernet using Unix sockets. The process model used was the client-server

paradigm.

One of the workstations is designated as the server and the rest as clients. Each

client has a complete copy of the geometry information. The server has the energy

information for each element of the dataset. If there are n clients , then at the

beginning of each iteration the server selects n shooting patches and distributes them

among the clients. In the progressive refinement approach, these would be the n

brightest patches. This is equivalent to exploiting the first-level parallelism described

in Section 2.3.

Utilizing the dataset geometry information available locally, each client then com-

putes the form-factors for the shooting patch assigned to it. These form-factors are

sent back to the server by the clients. Using this information, the server distributes

the energy. Thus, the form-factor calculation proceeds in parallel and the energy

distribution is sequential.

Performance results from this approach show that for a 180 x 180 hemi-cube

resolution for a 5196 patch dataset, average time per iteration is around one second

for five or more client processors.

This was an important first step in parallelization of radiosity and it proved suc-

cessful in reducing the radiosity calculation times. However, as is true for most

pioneering efforts, this did not have the benefit of deriving insights from previous

work. Its biggest drawback is the possibility of the server becoming the bottleneck

with increasing number of clients. Thus, the method is not scalable. It also involves

duplication of the entire dataset at each client processor. Besides the memory costs,

duplication raises the problems of consistency in an interactively changing environ-

ment. However, these problems are becoming apparent only now, when we have

reached the threshold of interactive radiosity.
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3.1.2 Radiosity on Tightly-Coupled Systems

Parallel radiosity algorithms have been developed and implemented for tightly cou-

pled multiprocessors too: [Baum90], [Drettakis90]. These attempts have focussed

primarily on coarse-grain parallelization with the number of processors used being in

the order of tens. Further, the target architectures for these were primarily shared-

memory MIMD systems.

Baum and Winget [Baum90] implemented their algorithm on the Silicon Graphics

line of graphics workstations. The radiosity process is viewed by them as a producer-

consumer problem.

The consumer first selects the shooting patch. The producer then is responsible

for generating the delta form-factors. The consumer collates these to find the actual

form-factors and distributes the energy using these.

The delta form-factor computation is done by hemi-cube item-buffer generation.

This involves projecting the environment on the faces of the hemi-cube and z-buffering

for each pixel of the hemi-cube. This process is the same as hidden-surface removal

and scan-conversion for 3-D objects. Graphics hardware, finely tuned for this purpose,

that is available on these workstations can be used for this purpose. Thus, the

producer task is implemented on the graphics hardware.

The consumer task is parallelized over the multiple host processors that are avail-

able on these workstations. The item-buffers generated by the producer are parti-

tioned into blocks that are distributed over the host processors using dynamic schedul-

ing to maintain a good load balance. Each host processor computes local form-factors

from these item-buffers. These local form-factor values are then summed over the host

processors to find the actual form-factor values. Energy distribution is then done in

parallel over the host processors.

Using an eight processor system and a hemi-cube resolution of 150 x 150 and a

model size of 8247 patches, this approach computed each radiosity iteration in one

second.

This has been integrated with a walkthrough program so that the user can inter-

actively walk through a dataset while the solution refines.
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The idea of using the graphics hardware to solve for the delta form-factors is a

novel and useful one. This also, however, limits the target architectures to multi-

processor machines with specialized 3-D graphics capability. Baum and Winget's

integration of the radiosity solution with the walkthrough program is an important

step towards developing user-modifiable, radiosity-lighted systems.

Drettakis et al. [Drettakis90] present a parallel method for calculating generalized

global illumination. They have designed their algorithm for common-bus shared-

memory MIMD architectures having about 10 - 30 processors. Their method involves

recursively subdividing a given dataset into cells in an octree fashion till the number

of objects within each cell becomes sufficiently small. Energy is then distributed in

parallel with one direction of energy beams devoted to each processor.

3.2 Parallel Ray-Tracing

Ray-tracing is an inherently parallel technique. Rays are cast corresponding to each

pixel of the screen. These rays are traced through the dataset, reflecting and refracting

according to the properties of the surfaces that these intersect. Parallelism in this

method can be exploited in two ways. First, the rays can be cast in parallel. Thus.

at a given time several rays could be trave. ing the dataset. Second, the intersection

calculations for each ray to determine the surfaces that intersect it (and their relative

order), can be done in parallel. An overview is given here of two parallel ray-tracing

papers, one designed for MIMD computers and the other for a SIMD computer.

3.2.1 Ray-tracing on MIMD systems

A spatial-subdivision based algorithm for MIMD systems has been proposed by Dipp6

and Swensen [Dipp984]. The three-dimensional space of the dataset is subdivided

into several volume elements or voxels. Each voxel is assigned to a processor. This

subdivision is adaptively changed at run time to maintain uniformity of load. Rays

originate from the voxel that contains the screen upon which the scene has to be ray-

traced. These rays pass through all the voxels, and hence the processors corresponding
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to them, that are along their direction of travel till they find suitable intersections.

At each processor, intersection calculations are done for all the objects that lie in the

voxel corresponding to this processor, with the incoming rays. A ray that does not find

any intersection is passed along to the appropriate processor corresponding to next

voxel along the ray's path. Each ray is traced in this fashion up to its intersection.

Thus, each voxel is processed independently and in parallel.

To alleviate load-balancing problems, the voxel shapes are changed dynamically to

maintain a good load balance of objects and rays. Neighboring processors share load

information and processors that are more heavily loaded transfer their load to lightly

loaded processors. The voxel shapes that have been proposed here are orthogonal

parallelopipeds, general cubes and tetrahedra - all of which are volumes bounded by

planar surfaces. These have been preferred over other surfaces for the ease of their

boundary detection and hence the voxel identification. Two-dimensional analogs of

these shapes, adapted from [Dipp684], are shown in fig 3.1.

Orthogonal Parallelopipeds General Cubes Tetrahedra

Figure 3.1 2-D Analogs of 3-D Spatial Subdivision Schemes

Planar surfaces however cause splitting of objects across the voxel boundaries.

The authors have proposed trading-off the amount of splitting necessary with the

degree to which the load is balanced.
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3.2.2 Ray-tracing on SIMD systems

Ray-tracing on highly-parallel hypercube connected processors has been studied by

Delany [Delany88]. This paper presents a very interesting and elegant way of mapping

ray-tracing on hypercube connected SIMD processors. The impleme.&ation was done

on a 16K processor Connection Machine CM-1. At a conceptual level, this technique

also uses incremental voxel traversal as described in Section 3.2.1.

The three-dimensional space of the dataset is subdivided in an octree fashion. The

objects and the rays are assigned xyz-triples, called key words, based on their spatial

location. Ray origins are used for assigning the initial key words to the rays.

Voxels are considered over edge lengths varying in powers of 2 from a scale of

unit-length to the largest side of the dataset (this corresponds to the voxel that

encompasses the whole dataset).

As before, rays are traced incrementally, one voxel at a time. The scale of the voxel

traversed however varies. If there is a large open space with no objects immediately

ahead of the current ray point in the direction of the ray, then the voxel traversed

by that ray would be the largest one (with the constraint that its edge length be a

power of 2), that would fit inside that space. This is the basic idea which causes the

ray-tracing time for a particular ray to be logarithmic in its free path length (length

of the ray-path that has no objects to be tested for intersection).

For each voxel traversal, the whole set of the object and ray point key words are

sorted across the entire hypercube. Objects at a given scale and location are spread

out over the consecutive processors along with the rays. A worthwhile point to note

here is that since objects are sorted within each voxel, we have available here an

induced octree ordering on the key words. Each ray-point can look at the key words

of the preceding and succeeding objects which would be on nearby (if not the same)

processors, and from them determine the smallest volume of space such that there are

no objects within it. If this volume is small then ray-object intersection calculations

need to be performed. If this is large , then the ray-point is simply moved to the far

edge of this volume. This completes one voxel traversal.

Voxel traversal is done either till the ray intersects or it is found to be outside of
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the entire dataset space (in which case it did not intersect any objects).

Using a CM-1 with 16K processors, time to fire 307200 rays in a scene containing

8000 objects, with 3 orders of reflection was 347.2 CPU seconds with this approach.
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Chapter 4

Parallel Radiosity Techniques

4.1 MasPar MP-1 Overview

Even though the algorithms described in this chapter are applicable to all mesh-

connected SIMD computers, their implementation has been done only on the MasPar

MP-1. It would be therefore in order to give a brief overview of the MasPar MP-1

before describing the approaches. A more detailed description of the MasPar MP-1

can be found in [Maspaxr90.

4.1.1 Processor Architecture

The MasPar MP-1 has a front-end which is currently a VAX 3520. The parallel

processing is done on the data parallel unit (DPU), which comprises a processor

element array (PE array) and a controller for this array, ACU (Array Control Unit).

Each processor element (PE) is a 1.8 MIPS 32-bit control processor with 16Kbytes

of RAM and 1500 bits of register space. The PEs are organized in a 2D mesh with

direct connections to 8 nearest neighbors. This is true even for the boundary PEs, so

the PE array layout is really toroidal. The MasPar MP-1 configuration on which the

implementations for this thesis are done has 4K PEs arranged in a toroidal square

mesh of 64 x 64 processors

The ACU has a 14 MF. S control processor with 128Kbytes of data memory and a



total of 1Mbyte of program memory. The ACU is responsible for sending instructions

and data to the PE array.

4.1.2 Communication Architecture

There are two major kinds of communications possible on the DPU in the MasPar

MP-1.

The first deals with ACU-PE array communications. These take place over a

special ACU-PE bus. This is a two-way communication path where the ACU can

send data and instructions to the PE array and get back data results from the PEs.

The second type of communication is among the PEs within the PE array. This

can be one of the following two major types:

a) X-Net: These are directional communications that can take place between PEs

which are located along one of the eight nearest-neighbor directions from one another.

These have low latency and high bandwidth.

b) Global Router: These are general communications that are possible between

any PE and any group of PEs. Although useful and convenient, general communica-

tion has higher latency and lower bandwidth than nearest neighbor communication.

4.2 Algorithms

A comparative study of three radiosity algorithms has been done on the MasPar

MP-1. Although the interconnection network of the MasPar MP-1 permits direct-

connection to eight nearest neighbors, only four (east, west, north, and south) of

these are used in the implementations described below. Thus, these methods are

applicable to all those mesh-connected SIMD computers in which the interior nodes

have interconnection degrees of four or more.

The approaches studied differ in the processor-polygon mappings used and in the

method of delta form-factor computation.
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4.2.1 A Balanced-Load Ray-Casting Approach

In this approach, the patches are uniformly distributed over the processor array, and

the form-factors are computed by a ray-casting approach.

4. T5[gFn.e.nrgy

3. Find the intersecting polygon
....... .........

Fiur .1T e aacdLa a-atn Aproc

Outline

b'"" 2Bro dr rays "

I Select the / •: :.
brightest / / ," ..

Figure 4.1 The Balanced-Load Ray-Casting Approach

Outline

Here, the patches derived from the polygons are spread out over the entire mesh of

processors in a uniform fashion. This ensures that the processors have an even load.
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The aim here is to exploit the parallelism as much as possible, at the cost of ignoring

the locality property of potential interactions in the radiosity method.

Following the progressive-refinement approach, at the beginning of each radiosity

iteration, the patch with the highest unshot energy is selected as the shooting patch

The origin and orientation of the rays to be fired from this patch are then determined.

Intersection testing is done one ray at a time by all processors. Each processor tests

for an intersection of the ray with the patches that it has and computes the minimum

distance of intersection. By finding the global minimum over these local minimum

distances on all the processors, the patch that is intersected by the ray is determined.

The energy carried by the ray, determined by the orientation of the ray with

respect to the shooting patch's normal and the radiosity of the shooting patch. is

transferred to the patch intersected. This process is repeated for all the rays from the

current shooting patch. After that, the next shooting patch is selected as described

before and the iteration repeats. These iterations continue till the energy of the

shooting patch selected is below a certain minimum threshold.

Implementation Notes

The polygons that have been output from the AutoCAD are converted to a .poly

file format from a . dxf format as in the usual Walkthrough pipeline. These are

then subdivided into patches based on a global grid by the program patchify .c.

The resolution of the grid along either of the dimensions can be specified by means of

command-line arguments. The output of the pat chify program is a .patch file which

is in ASCII. This is converted to a .mp file format by the program patchtomp. The

•mp file is in VAX binary format to enable faster loading times. The type-structure

of the patches here is the same as used on the MasPar. The description of this patch

format and this sequence of stages is shown in the figure 4.2. The output of the

radiosity runs is in the .O.patch format file that is consistent with the rest of the

Walkthrough pipeline.
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.dxf file

.poly file

.patc h file

-pamh fil

i h1 typedef struct polygon

I int n uiwerts:
float verts[MAXVERT] [3!:
float eq(4j
byte colors[MAXVERT 14mF file float unshoat 3]

float qather(31;
float rho(3] -
float area:
mts id:

~ O.paich file

*Walkthrough

Figure 4.2 The Modified Walkthrough Pipeline

The .mp file is read on to the MP-1 DPU array by the p.read() function

call. Selection of the brightest patch on the DPU is done by performing a global

reduceMax() operation over the shooting energies of all patches. This returns the

shooting energy of the brightest patch. From this the brightest patch is found and is

designated as the shooting patch for the current iteration.

35



The rays to be shot from the shooting patch are determined next. In the current

implementation, the origin of the rays is fixed at the center of the shooting patch,

but it can be jittered using techniques described in [Airey9Oa]. The direction of each

ray is along the vector from the center of the shooting patch to the center of one of

the subdivisions of the unit hemisphere on the shooting patch. These subdivisions

are the non-uniform subdivisions along radius and theta dimensions of the shooting

hemisphere as described in [Airey89]. This approach ensures that the areas projected

by such subdivisions onto the base of the hemisphere are equal and hence that the

energy carried by each ray is the same.

The code for finding the ray-polygon intersection has been taken from the book

Graphics Gems [Glassner90]. The ray is tested against all the patches at every pro-

cessor in parallel. The MasPar library function reduceMin() is then used to find the

minimum distance of intersection. After the patch that inte:.ectb .-e ,.urrent ray is

located, the energy carried by the ray is transferred to it.

All the variables that are ray-independent in the ray-polygon intersection code

are precomputed and stored with the patch in the data-structure poly-tag . Some

other useful data such as the patch center and the major axes along which the patch

is oriented are also precomputed and stored in poly-tag.

Results

The results of this give one a good idea of the amount of computation involved in the

radiosity process if coherence is not exploited in one form or the other. The average

time for one intersection cycle (intersection of one ray with all the polygons available),

in this implementation and for the Sitterson 365 model dataset with 3959 patches is

4.5ms. This gives the effective time for a single ray-polygon intersection as 1.13 lsec.

The current implementation does not make use of ray-tracing acceleration techniques

such as bounding volume hierarchies, object bounding volumes, generalized rays etc.

It should be possible to accelerate these times further using these techniques. This

will be discussed in Chapter 5.

The rate of energy distribution in sampling with different numbers of rays for the
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Sitterson 365 office model with 3959 patches is shown in figure 4.3. Shooting a larger

number of rays drops the unshot energy of the brightest patch more rapidly than does

shooting with a fewer number of rays. The reason is that sampling the environment

coarsely causes small pnlygons to be missed, and the energy that is transferred to the

polygons that are hit is more than their due share. Thus, the brightcz- patch ;n the

environment is likely to be brighter than what it really should be.

Shooting Patch

Energy .............. 200 rays

.............. 512 rays
3200 2048 rays

4096 rays
2800

2400

2000

1600
* a

1200

800 * '

400

0 I I I I I

0 2 4 8 16 32 64 128 Iterations
(log scale)

Figure 4.3 The Convergence for different number of rays in the

Balanced-Load Ray-Casting Approach

A criticism of this approach could be that whereas the intersections are computed

in parallel, finding the patch that intersected the ray and updating that patch's
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radiosity energy is done once per every ray. Thus, over the whole sequence of iterations

these steps proceed sequentially. If multiple rays are fired simultaneously (one per

processor) and made to circulate arot,nd the processors to determine the patch with

which they intersect, then this would be a totally parallel approach. There would

be no stages where any processor would be idle. A similar strategy could be used

for energy distribution too. These ideas have been implemented for the approach

described in subsection 4.2.3, but they have not been implemented for this approach.

The reason was that most of the time with the current MasPar configuration is not

taken up in these stages, but in the ray-polygon intersection routine. That routine

is totally parallelized already and implementing the ideas suggested as above would

not have changed the results much.

4.2.2 A Balanced-Load Environment-Projection Approach

In this approach, the patches are uniformly distributed over the processor array. The

form-factors are computed by projecting the environment on to the shooting patch

and then z-buffering the projected patches.

Outline

After the patches are distributed evenly over the processor mesh, the shooting patch

is found as described in Section 4.2.1. This information about the shooting patch

selection is then made available to all the other processors. Every patch in the

environment is projected on the single-plane corresponding to the current shooting

patch. This operation is totally parallel, being limited by the number of processors

available. After this, z-buffering of the resulting projections needs to be done to

determine which patch is actually visible from a given pixel on the single-plane.

To ........... th z-buffftr upei.Lion, the single-plane is mapped on the processor

mesh in a hierarchical fashion. Thus, neighboring pixels on the single-plane fall onto

either the same processor (if the resolution of the single-plane is greater than the

number of processors available) or onto the immediately neighboring processor. This
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mapping has been chosen to exploit the coherency expected among the nearby pixels

on the single-plane.

The projected patches now have to be scan-converted and z-buffered on this map-

ping of the single-plane over the processor mesh. For this, each projected patch is

sent to the processor corresponding to the lower-left corner (minimum x, minimum y)

of its projection's bounding-box on the single-plane. After this, each patch is spread

out in both the dimensions using the neighbor-to-neighbor inter-processor communi-

cation primitives. This is shown in fig 4.4. During this phase, appropriate buffering

is required to store multiple patches that might be reaching a particular pixel on

the single-plane. After the spread-out operation is complete, z-buffering is done to

determine the patch seen by a given pixel. For speed, and to reduce the number of

patches that need to be buffered for a given pixel, we can make the z-buffer operation

proceed concurrently with the spreading-out of the patch along the second dimension.

This is detailed in the Implementation Notes below.

An alternative strategy for scan-conversion could have been to do global placement

of the item-buffers instead of performing positioning by spreading out the polygons

locally. In this strategy, the processor having the polygon to be projected com-

putes the item-buffer elements corresponding to the projection of the polygon on the

projection-plane. This processor then routes the item-buffers directly to those proces-

sors that map on to the locations corresponding to these item-buffers. This is shown

in fig 4.5. Although this obviates the need for scan-conversion in the fashion de-

scribed before, it has two drawbacks. The first is the cost of the communication. The

router would provide slower communication for this case than the local neighbor-to-

neighbor commmunication. Secondly, results reproduced in Results below indicated

that the imbalance in this approach is high. The processors whose polygons cover

a large fraction of the projection plane become heavily loaded while there are some

processors that do not have any load. Thus, this strategy was not used in the final

implementation.
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7]

Scan Conversion by Local Placement

Scan Conversion by Global Placement

Figure 4.5 Scan-Conversion on the Projection-Plane

A study was also done within this approach to investigate the fraction of the

form-factors that are reused as the radiosity solution proceeds. These are summarized

graphically in fig 4.7 which appears in the subsection 4.2.2.

Implementation Notes

After patchification and conversion to the . mp file format, as described in the subsec-

tion 4.2.1, the patches are allocated to the DPU in a uniform fashion.

During the initialization phase, the matrix that would transform from the world-

coordinate system to the patch's local-coordinate system is computed and stored
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with every patch. This transformation matrix of a patch is used while projecting the

environment on that patch.

Given that the mapping of single-plane to the processors is static, the delta form-

factor of each of the pixels is fixed throughout the radiosity solution. Thus, these too

are precomputed and stored during the initialization phase.

The shooting patch is determined as in subsection 4.2.1 by a global

reduceMax() operation over the shooting energies of all the patches. This is fol-

lowed by transformation of every patch using the transformation matrix of the shoot-

ing patch.

In our implementation, the mapping of the single-plane to the processor mesh is

done to maintain an orthogonal and monotonic correspondence between the x and

y in the single-plane space and the system-defined constants ixproc and iyproc that

define the location of a processor in the processor space. Thus, if 7Z is the single-plane

space and P is the processor space then this mapping F: 7Z -- P, is such that

VX1, X24EZ -D X1 :z 2,Y-(X1 ) 5 -F(X2),(.T(z1), F(X2)fP)

Given the manner of numbering of ixproc and iyproc, this means that what cor-

responds to the lower-left corner on the single-plane space now corresponds to the

upper-left corner on this processor space. After the patches are routed to the upper-

left corner (by the router command), they are spread-out first along the south (in-

creasing y) by a sequence of xnet commands to give single-processor thick strips.

Each of these strips (corresponding to one patch), are then spread-out along east (in-

creasing x) again by xnet commands. The A.xels that fall within the bounding-box

but outside of the actual projection are not considered for z-buffering.

To conserve space and speed, storing of the item-buffers is done only during the

south-spread. During the spread in the east direction, z-buffering is done on the fly

as the item-buffer tuples travel across the processor mesh.

Delta form-factors are added together using the combining send provided by the

sendwithAdd library function.
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Results

The results for this approach on the 365 Sitterson office model with 3959 patches

are summarized graphically in figure 4.6. These are summarized in terms of number

of iterations and up to a 95% convergence of the solution. The single-plane used had

a side-to-height ratio of 3, allowing 91.7% of the shooting-patch's energy to be shot

out per iteration.

Shooting Patch

Energy .............. 64 x 64 resolution

.............. 128 x 128 resolution
3200 256 x 256 resolution

2800

2400

2000 :

1200 \

8200

-5

400

0 I I I _ I I
0 20 40 60 80 100 120 140 160 Iterations

Figure 4.6 The Convergence for different Single-Plane resolutions for

Balanced-Load Environment-Projection Approach

The rates of energy distribution in sampling with different resolutions of the single-

plane follow the same pattern, in general, as those for energy distribution rates with

different number of rays cast. Using a finer projection-plane resolution causes the

unshot energy of the brightest patch to decrease faster than it does with a coarser
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resolution. The reason however is the opposite as that for the previous approach.

In this approach, since polygons are being z-buffered, the small polygons that are

in front of other polygons would not be missed. However, if the resolution is coarse

enough, they would now be covering the whole pixels on the projection-plane whereas

they should have been covering only fractions of these. Thus, these polygons get a

higher share of energy than is due to them. This energy imbalance is corrected as the

resolution becomes finer.

For this approach, the times for each iteration varied depending upon the reso-

lution of the single-plane being used. The following times are for the 365 Sitterson

office model with 3959 patches. For a single-plane with 64 x 64 resolution, the aver-

age time per iteration is 0.24 secs. For a single-plane with 128 x 128 resolution, the

average time per iteration is 0.45 secs. For a single-plane with 256 x 256 resolution.

the average time per iteration is 2.15 secs.

The global positioning method for scan-conversion on a 4K resolution single-plane

with a side-to-height ratio of one, yielded a total of 27K item-buffer elements. The

maximum number of item-buffers on a single processor was 1.4K and the minimum

was zero.

Figure 4.7 shows the results of the study done to ascertain the number of form-

factors being reused. This was done on the Sitterson 365 office model with 3959

patches. As can be seen from the table, most form-factors are not reused till a very

late stage in the iteration process. By then the convergence is almost complete and

advantage if any to be gained from storing the form-factors are minimal. A small

cache for storing the form-factors might be useful. However, since for most patches,

the chance to reshoot energy comes only after several other patches have shot their

energy in between, the size of the cache will have to be much larger than the number of

form-factors reused. For instance, from the table it is clear that to reuse 6 form-factor

rows, one would need to store 177 such entries.
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Iteration No of form-factors reused Convergence %

13 2 53.03
32 3 76.57
59 3 88.76
101 3 94.40
177 6 97.20
392 39 98.61
1105 216 99.30
2462 810 99.65

Figure 4.7 Form-Factor Reuse

4.2.3 An Object-Space Ray-Casting Approach

This approach has been studied in a class project for the Highly Parallel Computing

course in Fall 1990 by Varshney and Good [Vaxshney90].

Outline

Here a hierarchical spatial subdivision approach has been considered. The dataset is

subdivided into some number of virtual cells. At the boundaries of each virtual cell,

there are virtual walls. The aim here is to take advantage of the spatial coherence of

the radiosity method: each surface interacts mostly with the nearby surfaces. These

clusters of nearby surfaces should then be mapped to processors that are near each

other on the processor mesh to minimize the communication costs. Each virtual wall

must keep a record of information on light emanating from its virtual cell, and pass

it to the appropriate neighboring cell.

To generate virtual cells that are approximately load-balanced, the orthogonal-

load-balancing strategy is used [Dipp 84]. Other strategies, such as general-cube

'ubdivision and tetrahedron subdivision, fail to guarantee that the polygons would

not need to be subdivided further during the cell-formation stage. The orthogonal-

load-balancing scheme, however, does not result in a very good load balance because

there is no local control of subdivision. Thus, if there is a dense cluster of polygons
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then the scheme would force all the cells that lie alorg the same orthogonal coordinates

along the three axes to be narrow. This could cause some of such cells to receive fewer

than the average number of polygons. This is observed in the load balancing results

for this approach. An alternative could have been to use the one-dimensional version

of this approach and divide up the dataset into slabs of varying thickness. That

would have given a good load balance but could have potentially resulted in a higher

amount of interactions that are directed outside of such a cell.

Further refinement of the balance for these load distributions is done by subdivid-

ing the polygons in the cells which are lightly loaded. This was admittedly a debatable

decision. In retrospect, it seems more appropriate to subdivide the polygon on the

basis of the light gradient across the parent polygon than on the basis of any load

balancing scheme being used.

The virtual cells can be assigned as one cell per PE or per group of PEs. For highly

parallel architectures such as the MasPar MP-1, if the one-cell-per-PE approach is

taken then it would result in a large number of cells with relatively few polygons per

cell. This would cause most of the interactions of a polygon to take place outside of

the cell containing it. This undermines the advantages to be gained from localization

of the interactions in a spatial-subdivision approach. Thus, each cell is assigned over

a group of PEs. This also alleviates the load balancing problem to a certain extent, as

within the group of PEs to which a cell is assigned, optimal load balancing is trivial.

Once the assignment of the patches to the processors is done, the radiosity iter-

ations for each cell proceed in parallel. For the purposes of capturing the inter-cell

interactions, each cell is bounded by virtual walls. These walls are called virtual as

they do not form a part of the dataset but are used by the algorithm to just store

and propagate any energies that are incident on them. The rays that do not intersect

the polygons in the current cell are intersected with the virtual walls and their ener-

gies are stored at the virtual wall with which they intersect. After local convergence

within the cells, the energy-laden virtual walls are exchanged between neighboring

cells to facilitate inter-cell interactions. Each cell then distributes the energy thus

obtained amongst its patches. After this, the local intra-cell iterations again start.

46



Thus, the whole process can be thought of as alternating local and global iterations

of the radiosity process.

Implementation Notes

After patchification and conversion to the .mp file format, the patches are allocated

to the DPU in a uniform fashion. The subdivision of polygons is done to a global grid

that is finer than the number of cells desired along that axis. In the sample dataset

for instance, the spatial subdivision was 8 x 8 x 1 along x, y, and z axes respectively.

The global grid used then was such that it partitioned the model into 16 x 16 x 2

sub-cells. The sum of polygons in each of the 16 strips along the x axis is computed

first. Then these 16 strips are coalesced as evenly, in number of polygons, as possible

into 8 groups. The boundaries of these groups correspond to the virtual walls along

the x axis. The y and z axes are divided similarly. Each virtual cell is then sent to a

row of the data-parallel unit of the MasPar as shown in the figure 4.8 The 8 x 8 x 1

subdivision yields one virtual cell per row of the MasPar. The patches within each

cell are distributed evenly across all the processors of the corresponding row.

Each processor maintains a partial form-factor matrix for the virtual cell on its

row. Each row of the matrix corresponds to how much each patch can see of the

other patches. Thus, the partial matrix has roughly one by sixty four of the rows and

all the columns of the virtual cell's form-factor matrix.

Each processor shoots rays from each of its patches and sends them to the neigh-

boring processor in the same row. Each ray is intersected with all the local patches

and then passed to the next processor. After cycling through all the 64 processors

in the row, the ray has been intersection-tested against every patch in the cell. The

identification of the patch intersected by the ray is recorded in the ray's structure and

the appropriate form-factor matrix entry on the ray's originated processor is updated.

If the ray did not intersect any patch, then it is tested against the six virtual walls of

the cell and is added to the buffer for the appropriate wall.
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selects its brightest patch (that with the most unshot energy) and creates an energy

packet. That packet is then cycled through all the processors of that row. As each

processor receives a packet, it uses its partial form-factor matrix to update the energies

of all its local patches. Once the cycle is completed, new shooting patches are chosen

and the cycle is repeated. When the unshot energy of the brightest patch is below

a threshold value, the process ends. This is the patch-to-patch energy distribution

stage.

After the patch energies have stabilized, the energy for each ray stored at each
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virtual wall (from the form-factor calculation stage), is updated based on the energy

of the ray's originating patch. This is the patch-to-wall energy distribution stage.

Once the ray energies at the walls have been updated, the neighboring cells need

to be updated with these energies. Each virtual wall's ray buffer is sent to the row

corresponding to the virtual cell on the other side of the wall. This the wall-to-wall

energy exchange stage.

The wall-rays are propagated through all the polygons on the row much as in

the form-factor calculation step, except that patch energies are updated now (instead

of testing for ray-patch intersection). This is the wall-to-patch energy distribution

stage.

After the wall-ray energies have been redistributed to the patches, the energy

distribution process repeats with patch-to-patch distribution.

This implementation has been done up to the stage of form-factor computation.

It has not been carried out further since the results of this stage indicated that this

approach is not well-suited to the problem.

Results

The sample dataset for this approach was the 365 Sitterson office model. This was

divided by a global grid to 8 x 8 x 1 subdivisions along the x, y, and z axes, yielding

a total of 64 cells. During the form-factor calculation stage, one ray per patch was

fired (for test purposes). Of a total of 3336 rays thus fired, 1983 of these intersect the

patches within the cell from which they originated. The remaiuing 1353 rays had to

be stored at the virtual wall buffers. This indicated that our assumption that most

of the interactions could be expected to be localized within each cell was wrong and

that as much as 40% of all interactions were actually directed outside of these virtual

cells. This suggests that spatial subdivision to a global grid is not a good strategy

for radiosity. Using PVS cells instead [Airey90a] for spatial subdivision might be a

better approach. This is again discussed in Chapter 5.
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4.3 Discussion of Results

Let us first compare the two balanced-load approaches: ray-casting and environment-

projection. The ray-casting approaches take up fewer iterations for a given conver-

gence than do the environment projection techniques. However, the time per iteration

is substantially more for the ray-casting approaches. For instance, for the dataset of

365 Sitterson office studied, the time per intersection cycle is 4.5 ms whereas the

iteration time for a 128 x 128 resolution single-plane is 450 ms. This allows the ray-

casting approach only 100 rays per iteration before it starts becoming slower than the

environment-projection approach, clearly an order of magnitude coarser sampling.

As is evident from the results given previously, balanced-load environment-

projection approach described above appears promising. As suggested in [Airev89].

it would make more sense to switch to a coarse ray-casting approach from the high-

resolution environment-projection approach in the later iterations. In later iterations.

the unshot energies left with the shooting patches are small enough that the high res-

olution of the single-plane is of much consequence. Alternatively, the resolution of the

single-plane could be adaptively varied depending upon the energy of the shooting

patch.

The basic difficulty in using the object-space based polygon-processor mappings

has been the load imbalance of the resulting distribution and the fewer local radiositv

interactions than expected.

At this point it would be interesting to assess the object-space environment-

projection approach that has not been implemented. One way to implement this

could be by using a spatial subdivision technique such as the one used for the object-

space ray-casting approach described above. Instead of storing rays at the virtual

walls, however, one could store the entire projection-planes. Intra-cell local radiosity

iterations could then be followed by inter-cell global radiosity iterations. During the

global iterations, these projection-planes could be exchanged across the neighboring

cells. Two main issues would need to be addressed in following such an approach.

The first one is the problem of correcting the load-imbalance that has been described
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in subsection 4.2.3. The second one is the problem of large amounts of interprocessor

communication involved. Assuming a 128 x 128 resolution single-plane, one would

have to store one such plane for each of the six virtual walls (to preserve the direc-

tion information of incident energy). Assuming that form-factors are being stored

as 4-byte floating-point numbers, this would require 384Kbytes of memory per cell.

On the MasPar implementation, if a cell is stored across a row of the DPU array,

this would require 6Kbytes of memory per PE. This much information would need

to be exchanged with other PEs at the end of each global iteration. As observed

from the results of subsection 4.2.3, we should therefore be expecting a high share

of all iterations to be global. The overall process would then be slow. Some other

alternatives to this approach are discussed in Chapter 5

In brief then, of the three approaches implemented, the balanced-load

environment-projection approach appears most promising.
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Chapter 5

Contributions and Future Work

This thesis has surveyed three parallel radiosity techniques for mesh-connected SIMD

computers. The contributions of this thesis include:

* Formulation of a balanced-load environment-projection radiosity approach for

mesh-connected SLMD computers.

* A relative comparison of three parallel radiosity techniques on mesh-connected

SIMD computers.

* A classification of possible parallelism levels in radiosity.

" Spatial subdivision without considering visibility has been observed to violate

the locality property of radiosity.

* Form-factor reuse study shows a low reuse of form-factors while a high conver-

gence is achieved.

This area is so rich that there is ample scope for future work both within and

outside of these approaches. A brief overview of these possibilities is provided next.

5.1 Future Work

5.1.1 Potentially Visible Cells

Following the ideas of Airey [Airey90a], one could consider potentially visible cells as

the basis for spatial subdivision rather than subdivision to a global grid. To describe



the concept of potentially visible cells by an example: rooms in a building are prime

candidates for potentially visible cells for its model. Considering potentially visible

cells promises minimal light interaction across cells, thus removing the main problem

of excessive inter-cell communication that was observed for the object-space ray-

casting approach in Section 4.2.3. Besides, this also ties in very nicely with the ideas

of incremental radiosity calculations and interactive walkthroughs of the architectural

datasets. The incremental radiosity techniques study the changes in the radiosity

shading with changes to the dataset. Most of these changes are local, such as moving

a chair and observing its shadow change. Therefore, it makes sense to exploit this

locality property by considering only the polygons that fall within the current cell.

As far as interactive walkthroughs are concerned, the idea of potentially visible cells

is already being used to determine the polygons to be displayed. This idea can be

extended to consider this set of polygons for radiosity calculation purposes.

An approach similar to that used in Section 4.2.3 could then be used. Local

iterations would proceed for the cell in which the user is currently in and once the

solution in the current cell refines to suitable levels, a global iteration could be done.

Energy across cells could now be stored on the open portals for the cell instead of

storing them on the six virtual walls as done in Section 4.2.3. When a user exits a

cell and enters a new cell, the polygons on the processor grid corresponding to the

current cell could be swapped out, those corresponding to the new cell be swapped

in. The polygons corresponding to the portals between the two cells would remain

on the processor mesh.

Any one of the approaches studied in this thesis would be a viable alternative for

computing the radiosity solution within each such potentially visible cell.

5.1.2 Accelerated Ray-Tracing

Extensions to the ray-casting approaches in this thesis could be made by incorporat-

ing one or more of the several well known ray-tracing techniques. Thus, one could use

bounding volume hierarchies, object bounding volumes, generalized rays etc. A im-

plementation similar to [Delany88] could also be studied for mesh-connected SIMD
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computers. Rough calculations are however not very promising. From the results

given in that paper, a rate of roughly 0.3 ms per ray intersection cycle is feasible

using that approach on a 16K CM-1. For a 128 x 128 projection-plane, that would

give roughly 5 seconds per iteration, which is by itself an order of magnitude costlier

than the balanced-load environment-projection approach considered in this thesis.

However, these are just hypothetical figures, and these should be checked out against

an actual implementation, now that fast virtual sorting and routing functions are

available on the MasPar MP-1 [Prins90].

5.1.3 Coherency in Scan-Conversion

There exists scope for exploiting more coherency in the scan-conversion of the poly-

gons in the environment-projection approach studied in Section 4.2.2. Right now.

while the polygon is being spread out along the second dimension, no use is made of

information about the other polygons that have been spread out before. Consider for

instance, a polygon, say A, that is smallest in z (and therefore will be finally chosen)

already spread out and another polygon, say B, that is within the extents of A, and

has yet to be spread out. Then after comparing the z-extents of the two polygons it

should be possible for one to discard B before spreading it out and save this extra

work. This is an extreme example, but still there are several cases in which using the

information of already spread out polygons, one could speed up the scan-conversion

of the current polygon. However, trying to take all these special cases into account

would also reduce the homogeneity - the very basis of all efficient SIMD algorithms -

in this approach, and it remains to be seen how these expected gains balance off the

losses arising from the new irregularities introduced.
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Appendix A

Source Code

patchify.c

Amitabh Varshney Howard Good

This program patchifies the input dataset into desired size patches
The patches can be specified on a global grid with possibly all the
three dimensions specified. This grid is aligned about the three
principal axes.

#include <stdio.h>
#include <math.h>

#ilclude <signal.h>
#include "host.h"
#include "error.h"

#define MAXVERT 20 /* redefine MAXVERT */

double PatchSide[3]; /* Stores the three sides of the global grid*/

Option Handler

Handles all the options for the program specified in command line
The options are '': learn the usage

IS, :have all the grid sides as equal



'C' :have all the grid sides specified

int option-handler(ac, av)
mnt ac;
char *av[];
{register mnt 1, ok = 1;

register char C

/* Take the default patchside as the CELLLENGTHi consts from host.h *
PatchSide[XJ = XCELLLENGTH;
PatchSide [YJ = YCELLLENGTH;
PatchSide EZ] = ZCELLLENGTH;

for (i = 1; i < ac &k av~ij [0]==- i++)
for (c = &(av~i] l]); *c; c++) switch (*c){

case '?':

fpri4ntf(stderr, 'IS D { Equal Sized Patchsize 1\n"');
fprintf(stderr, "C D D D { Cuboida. Patchsize }\n");
fprintf (stderr, "fname

{< f name. poly > f name. patch }\nI);
break;

case IS':
PatchSide[X] = PatchSide[YJ = PatchSideEZJ atof(av[++il);
break;

case 'CI:
PatchSide[X] - atof(avE++iJ);
PatchSideCY] = atof(av[++i]);
PatchSide[Z] - atof(avE++i]);
break;

default:
fprintf(stderr, 11%s: unknown option -%c\n", av[0], *c);
ok =0;
break;

fprintf(stderr,"Patchsides being used X %f Y Yf Z %f \n",
PatchSide CX], PatchSide[Y] ,PatchSideEZJ);
return (ok ? i :0);

write-patch

Writes out a patch to the patch file fp being constructed
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The header specifies things like patch cclors, number of verts

etc. and vertices is an array containing all the vertices.

write-patch(fp,header,vertices)

FILE* fp;
int header[10];
float vertices[MAXVERT] [3];
{ int k,n;

n = header[6];
fprintf(fp,".d %d 7d % %d d d 7d d .d\n",

header[0] ,header[I] ,header[2] ,header[3] ,header[4],

header [5] ,header [6] ,header [7] ,header[81 ,header [9]);

for (k = 0; k < n; k++)

fprintf(fp,"%f %f %f\n",vertices[k] [X] ,vertices[k] [Y] ,vertices[k] [Z]);
fflush(fp);

pat chif icat ion

Writes out a patch to the patch file fp being constructed
The header specifies things like patch colors, number of verts
etc. and vertices is an array containing all the vertices.
All the output patches are either triangles or quads.

void patchification(poly-fp,patch.fp)

FILE* poly-fp;

FILE* patch.fp;
{

Poly p; /* Polygon being processed */
int i,j,jj,k,m,n; /* Miscellaneous counters */
char line[512]; /* Line from a poly file */
int h[10]; /* Polygon header */
int polysread = 0; /* Number of polygons read so far*/
int pwritten - 0; /* Number of patches written so far*/
int xO, xl, x2, xli, x2i, xidim, x2dim;
float wb[MAXVERT] [3]; /* Buffers to store the vertices */
float new-verts[4] [3];
float ex[3*2]; /* Min and max extents in 3D */
float clipbox[3*2]; /* Current clipping box for polygon*/

float normal[3]; /* Plane normal */
int orientation; /* Orientation of the polygon */
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while (fgets(line, 511, poly-.fp)) 1* Read in the header line *
{if(++polysread % 1000 - 0) fprintf(stderr,"Read poly #%d\n",polysread),

if (sscanf(line,"%d %d YXd %/d %d %.d %d %d %d %d\n",
&h[0J,&h[1],&hr2J,&hr3J,&hc4],&hc5J,&hC6],&h[7],&h[8],&h[9]) 1=10)
die ("patchif ication", "bad header read", 1);

1* Determine the extents of the current polygon *
ex[MINEX(X)] = ex[MINEX(Y)J = ex[MINEX(Z)] = HUGE;
ex[MAXEX(X)J = ex[MAXE.X(Y)] = ex[MAXEX(Z)1 = -HUGE;

for (i-0; i<h[6]; i++) 1* h[61 is the number of vertices *
{if (fscanf(poly-.fp,"%f %f '/f\n",&p.verts[iJ [X] ,&p.verts[iJ [Y],

&p. vert sCiJ CZJ ) !=3)
die(Ilread-poly-.format"l,"bad vert read",l);

else
{exCMINE.X(X)1 = MIN(ezCMINEX(X)] ,p.verts~i) [Xl);
exEMINE-X(Y)] = MIN(ex[MINEX(Y)J ,p.verts~iJ [YJ);
ex[MINEX(Z)] = MIN(ex[MINEX(Z)J,p.verts~i] [ZI);
ex[MAXEX(X)J = MAX(exCMAXEX(X),p.versCi]MX]);
ex[MAXEX(Y)] = MAX(exEMAXEX(Y)] ,p.verts~iil[Y));
ex[MAXEX(Z)J = MAX(ex[MAXEX(Z),p.verts~iJCZJ);

p.numverts -h[;

planeEq(kp,p.verts,p.numverts);

if (h[7J > 0) 1* this is an emitter polygon so do not split *

write-.patch(patch-.fp,h,p.verts);
pwritten++;

continue;

}omlX ab~~qA)

normal[X] = fabs(p.eq[A]);
normal[Y] - fabs(p.eqEBJ);

/* Determine the orientation of the polygon - ie the pair of
orthogonal axes along which its projection would be maximum *

if (normal[X] > normal[YJ)
{if (normal[X] > normal[ZJ) orientation = SKEWX;
else orientation = SKEWZ;
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else
{if (normalEY] > normalEZ]) orientation =SKEWY;
else orientation = SKEWZ;

if} oml[] 0&(oml[l-0)oinain=X

if ((normalCX] 0)&&(normalCZ] -0)) orientation = Y
if ((normalCX] == )&&(normal[Z] 0)) orientation = Z

switch (orientation)
{case X: case SKEWX: xI = Y; x2 Z; xO = X; break;
case Y: case SKEWY: xI = Z; x2 =X; xO = Y; break;
case Z: case SKEWZ: xI - X; x2 Y; xO = Z; break;

1* snap to global grid *

xii a floor(exCMINEX(xi)]/PatchSide~xiJ).
x2i = floor(exCMINEX(x2))/Patchide[c2J);
xidim - ceil(exCMAXEX(ui)]/PatchSide~xi]) - xii;
x2dim = ceil(exCMAXEX(x2)J/PatchSide[x2]) - x2i;

clipboxCMINEX(xO)) - exCMINEX(xO)I;
clipbox[MAXEX(x0)] - exCMAXEX(xO)];

clipboxCMINE-X(xi))- xli*PatchSide Eli];
clipbox[MAXEX(xi)]= clipboxCMINEX(xi)] + PatchSide [xi];

1* Clip the current polygon into desired sized patches *
for (i = 0; i < xldim; i+.)
{clipbox[MINEX(x2)] - x2i*PatchSide[x2];
clipboxEMAXEX(x2)] - clipboxCMINEX(x2)] + PatchSide £x2];
for Q(- 0; j <x2dim; j++)
{ if ((n - clip-face-.to-.box(cipboxMINX,clipbox[MAX]I

clipbox[MINY] ,clipbox[MAXY),
clipboxEMINZ] ,clipboxEMAXZ],
&p,wb,orientationex)) > 2)

{if (n <= 4)
{h[6] n

write-patch(patch-fp,h,wb);

pwritt en++;

else

{h[6] = 4;
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write-.patch (patch..fp ,h,wb);
pwritten++;
if (n%2 1) k=n - 1;
else k n;

for (jj I ; jj <= (k-4)/2; jj++)
{for(m=O;m<3;m++)

{new-.vertsEO] [m] = wbEO] Em];
new-.verts~l] Em] = wb(jj*2)+1] Em];
new-.vertsE2] Em] = wb(jj*2)+2] Em];
new-..vertsE3] Em] = wb[(jj*2)+3] Em];

hE6] 4;
write-.patch(patch.fp ,h,new..verts);
pwritten++;

if (n%2 -= 1)

{for(m0O;m<3;m++)
{nev..verts [01 Em] =wb COI [m];
new-.verts~i] Em] =wb[(jj*2)+1] Em];
new-.verts [2] Em] =wb C Qj *2) +2] Cm];

hC63 3;
write-.patch(patch.fp ,h,nev..verts);
pwritten++;

clipboxEMINEX(x2)] - clipboxMAXEX(x2)];
clipboxMAXEX(x2)] += PatchSide Ex2];

clipboxEMINEX(zl)] clipboxEMAXEX(xl)];
clipboxEMAX.EX(ml)] +-m PatchSide Eu];

printfQ'Input polygons =%d\n',polysread);

printfQ'Output patches % /d\n",pwritten);

Main

main(ac, av)
int ac;
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char *av [I;
{ mt options;
FILE* poly-.fp; /* Input poly file *
FILE* patch-.fp; /* Output patch file *
char filename E128];

if (I(options = option-.handler(ac,av))) die("main","bad options",l);

if (!(poly.fp = fopen(sprintf(filename,"%s.poly" ,av'Loptionsj) ,"rl
die("'main",'"can't open input poly file",1);

if (!(patch-.fp = fopen(sprintf(filename,"%s.patch",av[options]) ,I Wt")))
die(t"mainh,"can't open output patch file",I);

patchification(poly-fp,patch-fp); /* Carry out patchification *

fclcse(poly.fp);
fclose(patch-fp.'
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patchtomp.c

Amitabh Varshney Howard Good

Pat cht omp

This program takes in a patchified dataset and converts it to
a binary format file suitable for fast reading in by the MasPar MP-1
This speeds up the set-up time on the MasPar. It also calculates some
other parameters like the polygon equations and their areas before
writing these out to the MasPar binary file.

#include <stdic.h>
#include <math.h>

#include "host.h"

#include "error.h"

/*********************************************************************
bufvrite

Using block I/O this routine writes out data in the binary format
into the file fp.

void bufwrite(fp,ptr,size)
FILE* fp; /* Output file */
char* ptr; /* Data pointer */
int size; /* Data size */
{ if (!fwrite(ptr,size,l,fp))

die("bufwrite","bad write",1);
}

/*********************************************************************
cross-prod

Returns the cross product of two vectors v1 and v2 into r

void cross.prod(r,vl,v2)

float r[4], v1[3], v213];
{ rrX] = v1[Y]*v2[Z] - vIEZ]*v2EYJ;

r[Y] = -vlCX]*v2EZ] + vl[ZJ*v2[X];
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r[Z] v1lX]*v2[Y] - vlLY]*v2LXJ;

planeEq

Given a set of vertices and in a plane, this routine finds
out the equation of the plane.

planeEq(cur-poly ,verts,numv)
Poly* cur-.poly; 1* Polygon pointer *
int numv; /* Num~ber of vertices */
float vertsCMAXVERi C31 ; 1* Vertex array *
{float eq C41, vl[3] , v2LC31
int i,j,k;
float mag;

i = 0;

do
{j =(i+1) % 3;

k =(j+1) % 3;
/* determine the two vectors in the plane *
v1LX] - verts~j] LXI - verts~i]LX].;
viLY] - vert s [j] LY] - verts~i] LY];
v1LZ] - verts~j] LZ] - verts Li] LZ];

v2LX] -verts~k] LX] - vertsLj] LX];
v2CY] - verts~kLY3 - verts~j]LY);
v2LZ] - verts~k] LZ) - verts~j] LZ];

/* take their cross product *
cross-.prod(eq,vl,v2);

while((++i<nuinv)&&((fabs(eqLX])+fabs(eq[Y])+fabs(eqLCZ])<L1..JORMMIN)));

if (i-=numv)
{fprintf(stderr,planeEqO: bad face:\n");

for (i - 0; i < numv; i++)
fprintf(stderr,".g %.g %g\n",verts~i] LXi,verts Li]L[Y],verts Li]LZ]);

fflush(stderr);
eq[X] - eqLY] - eqLZ] - eqLW] = 0.0;

else /* normal has been found *

f mag = sqrt(eqLXJ*eqLX] + eq[Y]*eqLY] + eq[Z]*eq[ZJ);
eq[XJ /= mag;
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eqLY]1= mag;
eqLZ] 3 mag;
eqLW] - -(eq LX]*verts £0] X] +eq LY]*verts £0] LY]+eq LZ]*verts £0] ZJ);

1* Return back the equation as elements of the polygon passed in *

cur-.poly->eq[X] = eq[X];
cur-poly->eq[Y] = eq[Y];

cur-poly->eq[Z] = eq[Z];
cur-poly->eqLW] = eq[W];

area

Given a polygon, this routine returns the area of the polygon
This is done by considering the polygon to be made up of a number
of tri.angles and finding the area of each triangle by halving the
magnitude of the cross product of two of its sides.

area(cur-poly)
Poly* cur-.poly;

{ mt i,j,k;
float area -0.0;
f loat viL3] , v2L[31, v3L[4]

for(iino; i < cur-.poly->numverts - 2; i++)
{j - i+i;

k - i+2;

I.Determine the two vectors as the two sides of the sub-triangle ~c
viL[X] - cur..poly->ver-tsLi] CX] - cur-.poly->verts Li] LX];
vI LY] - cur-.poly->vez-tsLj] LY] - cur-.poly->verts Li] LY];
viLZ] - cur-.poly->ver-ts Li] Z] - cur-.poly->verts Li] LZ]

v2 LX] - cur..poly->verts Lk] CX] - cur-.poly->verts Li] Lx];
v2LYI cur-.poly->vez-ts~k] LY] - cur-.poly->ver-tsLi] LY];
v2LZ] - cur-.poly->verts~k] CZ] - cur..poly->verts Li] LZ];

/* Take their cross product *
cross-prod(v3, vI, v2);

area += 0.5*sqrt(v3X*v3LX] + v3LY]*v3LY] + v3[EZ]*v3LZ]);
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cur..poly->area - area;

io-polys

Given an ascii file of polygons, this routine reads in
polygons, finds their plane equations and areas and writes them out
in the binary format suitable to fast reading in on the MasPar
It returns the number of polygons read.

mnt io-.polys (patch.fp ,mpjfp)
FILE* patch-fp; /* patch file *
FILE* mp-.fp; 1* mp file */
{Poly *cur..poly; /* current polygon *
Vec3 temp-.vert; /*buffer to store vertices *
mnt polysread - 0; /* polygons read so far *
int i,j; /* misc counters */
char lineC5l2J; /* Input file line *
int frontC3],n; 1* front face r,g,b's and num verts*/
mnt backC31; /* back face r,g,b's */
int emitterjid; /* Id of the emitter polygon*/
int txtr-.id ; /* Texture stuff *
mnt txtr-index;
int average.col[3];

ALLDCN(cur..poly, Poly, 1, "io..polys"l);

/* read in the polygons in the Walkthrough format*/
while ((j - fscanf(patch.fp,'%d %d %d %d %d %d %d %d %d %d",

kfront [RED) ,&frontCGREEN ,&f ront £BLUE] ,&backREDJ,&back[GREEN],
&back[BLUE], &n,&emitter-.id,&ttr.id,&txtr~index)) != EOF)

{if (Q ! 10)

{fprintf(stderr,"Failure for polygon# 7.d\n',polysread);
fprintf(stderr,"Polygon Header is: %d %d %d %d %d %d %d %d %d %d\n",

front [RED) ,front [GREEN] ,front [BLUE) ,back [RED] ,back[GREENJ,
backEBLUE], n,emitter-.id,txtr..id,txtr.index);

die("read-.poly-.format" ,"bad header read", 1);

/* Initialize all entries to zeroes *
ior (j=0;j<MAXVERT;j++)
{cur-.poly->verts[jJ [XJ = cur-.poly->verts[j] [Y] = cur-poly->verts[2 i1Z

= 0.0;

cur-poly->colors[j] [RED] =cur..poly->colors[j] [GREEN]=
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cur-poly- >colorsCj ] [BLUE]) cur-po ly- >colors CjI [ALPHA] =(unsigned char)O;

average..colCRED] - average-.col[GREEN] = average..col[BLUE1 = 0;
/* Assign vertices and colors to polygon to be written out *
for(i = 0; i < n; i++)
{if (fscanf(patch-fp,"%f %f %f\n",&temp-.vert[X,&temp-vert[Y],

&temp-.vert [Z]) =3)
{fprintf(stderr,"Failure for polygon# %d\n",polysread);
fprintf(stderr,"Polygon Header is: %d %d %d %d %d %~d %~d 'd %Ad %d\n",
front [RED] ,front [GREEN) ,front [BLUE) ,back [RED] ,back[GREENJ,
back[BLUE1, n,emitterjid,txtr-id,txtr.index);

fflush(stderr);
die ("read.poly-.format"l,"bad vert read" .1);

cur-.poly->verts Ci] CX] - temp-.vert CX];
cur-.poly->verts Ci] CY] = temp..yert[Y];
cur-.poly->verts [iJCZ] - temp-.vert [ZJ;
average-.col [RED] +- cur-.poly->colors [i] [RED] = front [RED];
average-col[GREEN] +- cur-.poly->colors[i] [GREEN] = frontGREEN];
average..col [BLUE] +- cur-.poly->colors Ci] [BLUE] - front [BLUE];

cur..poly->numverts - n

/* find the plane equation of the polygon *
planeEq(cur..poly,cur-.poly->verts, n);

/* find the area of the polygon *
area(cur-.poly);

1* initialize the total radiosity values of polygons to zeroes *
cur..poly->gather [RED] -
cur-.poly->gather [GREEN]
cur-.poly->gather[BLUE] - 0.0;

/* initialize the reflectance rho of polys to normalized average of
vertex colors

n *- 255;
cur..poly->rho[RED] - 1.0*average..colCRED] / n;
cur-.poly->rho[GREEN] 1.0*average-col[GREEN] / n;
cur-poly->rhoCBLUE] =1.0*average-.colCBLUE] / n;

/* If the polygon is an emitter, initialize its unshot radiosity to
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some desired values else init them to zeroes.

if (emitter-id > 0)
cur..poly->umshot [RED]

cur-poly->unshot [GREEN] =

cur..poly->unshot [BLUE] = INITEMIT;
else

cur-.poly->unshot [RED]
cur-.poly->unshot [GREEN]
cur-.poly->unshot [BLUE] 0 0;

/* Write out the polygon *
bufwrite(mp-.fp, (char *) cur-.poly, sizeof(Poly));

if(!(++Polysread %. 500))
{fprintf(stderr, "Read polygon# %d... .\n", polysread);
fflush(stderr);

return polysread;

MAIN

main(ac ,av)
mnt ac;
char* avC];

FILE* patch-.fp; /* Input Ascii file of dataset*I
FILE* mp..fp; /* Output Binary file *
char f ilename [128] ;
int NumPolys - 0; /* Number of polygons in the dataset*/

1* Open up the I/O files *
if (ac -- 1)
{printf ("Usage: %/s fname {< fname.patch > fname.mp }\n1',av[O]);
exit(1);

if (!(patch-.fp - fopen(sprintf(filename,"%s.patch",av[1]) ,"r"l)))
die("patchtomp","can't open input"l,1);
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if (I (mp..fp - fopen(sprintf(±ilename,"%s.mp'l,av[1J) ,"w')))

die("lpa~tchtomp' ,"can't open output" ,1);

bufwrite(mp-.fp, (char *)&NumPolys, sizeof(int));

NumPolys = io-polys(patch.fp, mp-fp);

/* Write the number of polygons in the beginning *
fseek(mp-.fp,OL,O);
bufwrite(mp-.fp, (char *)&NumPolys, sizeof(int));

fclose(patch-.fp);
fclose(mp.fp);
printfQ"Num polys written - %/d\n', NumPolys);
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host.h

/************************************************************************
Copyright 1991: Amitabh Varshney UNC CS Dept. All Rights Reserved

HOST.H

Approach: Balanced-Load Ray-Casting

This file is the main include file and contains the constants, macros

typedefs used.

CONSTANTS

#define A 0 /* Generally used with plane equation*/
#define B 1
#define C 2
#define D 3

#define X 0 /* Generally used with vertices */
#define Y 1
#define Z 2
#define W 3

#define SKEWX 4 /* Used for the orientation of the polygon*/
#define SKEWY 5
#define SKEWZ 6

#define RED 0 /* Colors associated with the polygon*/
#define GREEN 1
#define BLUE 2

#define ALPHA 3 /* Transparency option with radiosity in
future? .... right now for data alignment*/

#define L1_NORMMIN ±e-4 /* Tolerance limit for computation errors */
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#define HUGEF le+10 /* Some huge floating pt number */

#define EAST 0 /* Generally used for virtual walls */
#define WEST I
#define NORTH 2
#define SOUTH 3
#define FLOOR 4
#define CEILING 5

#define U 0

#define V 1

#define NXPROC 64 /* Same as nxproc but facilitates array decls*/
#define NYPROC 64 /* Same as nyproc but facilitates array decls*/

#define NUMRAYS 4050 /* Number of rays per polygon */
#define NUMRADIUS 45 /* Number of radius divisions in ray firing */
#define NUMTHETA 90 /* Number of theta divisions in ray firing */

/* NUMTHETA = 2*NUMRADIUS and
NUMTHETA*NUMRADIUS = NUMRAYS

#defin MAXPOLYS 40960 /* Maximum no of polygons in all
#define MAXPEPOLYS 3 /* Maximum no of polygons per PE *
#define MAXROWPOLYS 185 /* Maximum no of polygons per DPU row
#define MAXRAYS MAXPEPOLYS*NUMRAYS /* Total maximum no of rays */
#define MAXVERT 4 /* Maximum no of vertices in a polygon */

#define MAXPOLYSPER.CELL 4096 /* Maximum no of polys in a cell */
/* X dimension of FF matrix per PE */
#define FFX MAXPOLYSPERCELL/NXPROC

/* Y dimension of FF matrix per PE */
#define FFY MAXPOLYSPERCELL/NYPROC

#define XROOMDIM 8 /* Number of Virtual Rooms along 3-axes */
#define YROOMDIM 8
#define ZROOMDIM 1
#define XCELLS 16

/* No of finer patch subdivisions along axes*/
#define YCELLS 16
#define ZCELLS 2
#define XCELLLENGTH 180.0
/* Cell lengths used for patchification */
#define YCELLLENGTH 120.0
#define ZCELLLENGTH 500.0
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#define INIT-.EMIT
1000.0 /* Initial radiosity value for an emitter *
#define TOL 10.0
/* Terminal radiosity value for local iters*I

MACROS

#define DOT(a,b) (a[O]*b[0J + a[l]*b[1] + a[21*b[2]) /* Dot product *
#define CROSS(a, b, c)

a[01O - b Ell*c [21 - c Ell]*b [2];
a~l] - cE01*b[21 - b[0]*c[2J;\
aC21 = b[OJ*c[1] - c[0J*b[1];\

I
#define PLtJRAL-IORMALIZE(a, b)

{plural float magnitude; \
magnitude= fp-sqrt(b[0*bO] + b~l]*b[1J + b[21*b[21);\

a [0] = b [0]/magnitude; \
a~l] = b[1]/magnitude; \
a [21 = b £21 /magnitude;\

I
#define VEC..SUM(a) (a[OJ + a~l] + a[2J)
#define VEC-.ASSIGN(a, b) \

{aEO] b[01; a~l] - bEl]; a[2] b[2];1
#define VEC4-.ASSIGN(a, b) \

{a[0] b[0]; aCl] = b~l]; aC2] = bC21; a[3] b[3];}
#define VEC-ASSIGN.2ERO(a) \

{aEo] 0; a~l] - 0; a[2] - 0;j
#define VECADD(a, b, c) \

{a[0] b[0J + c[01; a~l] = b~l] + c~ll; a[2] b[2l + c[2];1

#define MIN(x,y) (((x)<(y))?(x):(y)) /* Minimum of two nos*/
#define MAX(x,y) (((X)>(y))?(x):(y)) 1* Maximum of two nos*/
#define MINX ((X)«<i) /* Indexing in extent's array*/
#define MAXX (((X)«il)+i)
#define MINY ((Y)<cl)
#define MAXY (((Y)«1l)+l)
#define MINZ ((Z)<1)
#define MAXZ (((Z)«il)+i)
#define MINEX(C) ((C)(<i)
#define MAXEX(C) (((C)«<i)+i)
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/* Allocate N items of type TYPE at pointer location PTR on ACU or Front End*!
#define ALLOCN(PTR,TYPE,N,RTN)

if (!(PTR = (TYPE *) malloc((unsigned) (N)*sizeof(TYPE')))

printf("malloc failed\n");\
exit(-1);\

/* AJllocpte N items of type TYPE at pointer location PTR on the PEs ~
#define P.ALLOCN(PTR,TYPE,N,RTN)

if (!(PTR = (plural TYPE *)p-.malloc((unsigned) (N)*sizeof(TYPE)))){

p-printf ("p-.maJlloc failed\n");\
exit(-1);\

#define START gettimeofday(&tm,&tz);\
et - (tm.tv-.sec)+ (0.000001* (tm.tv-.usec));

#define STOP gettimeofday(ktm,&tz);\
et = (tm.tv-sec)+(0.000001*(tm.tv-usec)) - et;

/* for((v)-(f)->vertsf(i)-0];(i)<(f)->n;(v)=(f)->ver-ts[++(i)J) *

TYPEDEFS

typedef float Vec3[3]l;
typedef float Vec4[41;

typedef unsigned char byte;
/* Used to define colors and form-f actors*/

/'* -POLYGON- */
typedef struct polygon

{ mt numverts; /* Number of vertices *
float verts[MAXVE-RTJE3];/* Points of the polygon (quad/triangle) *
Vec4 eq; /* Eq of the polygon (quad/triangle) */
byte colors[MAXVERT3[43;/*Colors at the vertices *
float unshot[3]; /* Unshot rad value for front & back face *
float gatherC31; /* Accumulated energy for front & back face *
float rho[3J; /* Reflectance for front and back face *
float area; /* Area of the polygon *
int id; /* Polygon id *
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} Poly;

/* -POLYGON GEOMETRY-*/
typedef struct polygeom

{ int numverts; /* Number of vertices *:
float verts[MAXVERT][3];/* Points of the polygon (quad/triangle) */
Vec4 eq; /* Eq of the polygon (quad/triangle) */

} PolyGeom;

/* -RAY- */
typedef struct ray
{ float origin[3]; /* Origin of the ray */

float direction[3]; /* Direction of the ray */
int id; /* Id of the polygon it hits */
float energy[3]; /* Energy with this ray */
float distance; /* Parameter 't' in its parametric form */

} Ray;

-Miscellaneous data used per poly during ff calc- */
typedef struct poly-tag
{ float poly-center[3]; /* Center of the polygon */

int x, y; /* Axes along which the polygon lies */
float uv[2J [3]; /* Some variables to avoid repeated calc*/
float beta-denom [2] ;
float poly-mat[3] [4]; /* Used in orienting rays to be fired */

} PolyTag;

/* -ENERGY PACKETS- */
typedef struct energy
{ int id; /* Id of the patch which shot this packet */
float unshot[3]; /* Unshot radiosity for the shooting patch */
float area; /* Area of the shooting patch */

} Packet;

:* :=uZ urn uu::::=m===:::Extern Def 5 :::::::::::::*

extern char* malloc();
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host.c

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include "host.h"
#include "error.h"

extern void polysto-peo;

Poly *poly-list; /* list of polygons */

/* Low level C file i/o routine to read in large amounts of data */
bufread(fd ,ptr, size,num items)
int fd;
char* ptr;
int size;
int num_items;
{ if (read(fd, ptr, size*numitems) < 0)

die ("bufread", "bad read",l);
}

/* This reads in the polygons from the special binary format file */
int read.polys(mp-fp)
int mp.fp; /* binary file */

{ Poly *cur-poly; /* current polygon in the poly-list */
int i;

int numPolys; /* number of polygons read *1

/* determine the number of polygons to be read */
bufread(mp_fp,(char *) &numPolys, sizeof(int), 1);

/* allocate space accordingly */
ALLOCN(poly.iist, Poly, MAXPOLYS, "read-polys");

/* read in the polygons */

bufread(mpfp, (char *) poly-list, sizeof(Poly), numPolys);

return(numPolys);

}
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1* This function prints out the polygon cur-.poly - useful in debugging *
print-poly (cur-poly)
Poly *cur-poly;

{ mt j;

printf ("/.d \n" ,cur.poly->numverts),
for (j=O;j<MAXVERT~j++)
{ printfQ'%f %f %.f \n" ,cur-.poly->verts~j] EX],cur,..poly->verts Ej] LY],

cur-.poly->ver-ts~jJ [Z]);

mnt option-handler(ac, av)
mnt ac;
char *av[];
{register nt, i, ok = 1;
register char C

for (i = 1; i < ac && av[i] [0]= '' i++)

for (c - &(av[iJ [1l); *c; c+-') switch (*c){
case '?':

printf ("No options are available\n");
break;

default:
fprintf(stderr, "%s: unkmown option -%c\n", av[Q], *c);
ok = 0;
break;

return (ok ? i : 0);

main(ac, av)
mnt ac;
char *av[];
{ mt options;
int mp-fp; /* Input binary file *
char filename[128J; /* Input file name *
mnt total-polys = 0;

struct timeval tin; /* Timing stuff *
struct timezone tz;
double et;
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if (!(options = option-.handler(ac,av))) die("io","bad options",I);

if (I (mp-.fp - open(sprintf(filename,"Ys.mp"l,av~optionsJ) ,0.RDQNLY))))
die("io","can't open input mp fiJle",1);

/* Read in the polygons*/

tota...polys = read-~polys(mp-fp);

close (mp-.fp);

/* Transfer the polygons to the DPU *
fprintf(stdout ,"Xferring %d polys to PEs\nt ,tota.polys);

fflush(stdout);

START

callF~equest(poys-to-.pe, 8, poly-list, total-polys);

STOP

1* Print out the timing stats *
fprintf(stdout,"Xfer to PEs over. Time in DPU =%iO.2f secs\n", et);

fflush(stdout);
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error.h

/~Include file for error handling *
extern FILE* ErrFile:
extern void dieo; extern void warningo;
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error.c

/* File for handling errors *1

#include <stdio.h>
#include "error.h"

FILE* ErrFile = stderr;

/* Print out an error message and exit with an error code */
void die(rtn,msg,code)
char* rtn;
char* msg;
int code;

{ fprintf(ErrFile,"%s: %s\n",rtn,msg); exit(code); }

/* Print out a warning message */
void warning(rtn,msg,code)

char* rtn;
char* msg;

int code;
{ fprintf(ErrFile,"%s: %s code - %d\n',rtn,msg,code); }



dist.m for Balanced-Load Ray-Casting Approach

Copyright 1991: Amitabh Varshney, UNC CS Dept. All Rights Reserved

DIST.M

Approach: Balanced-Load Ray-Casting

This part of the code is responsible for distributing the energies.

#include <mpl.h>
#include <stdio.h>
#include <math.h>

#include <sys/time.h>
#include "host.h"

extern struct timeval tin; /* timing variables */
extern struct timezone tz;

extern int maxPEpoly; /* max no of polys per PE */
extern plural Poly* old.poly-list; /* Polys to be used */
extern plural int oldPoly; /*No of polys in old-poly-list*/
/* Form factor array */
extern plural float form-factors;

float MinRad - 150.0;

dist-energy

Carry out the distribution of energies from patch to patch within
the current cell. This assumes that the form-factors have been
calculated and the polygons are arranged in a load-balanced fashion

dist-energy()
{ float maxunshot; /, Maximum unshot energy */

float total-unshot.= HUGEF; /* Total unshot energy */
float shooting-radi3J; /* Radiosity of the shooting patch */
int i, j, iteration - 0;
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float shooter-area; /* Area of the shooting patch */
int shooter-id; /* Polygon id of shooting patch */
int total-rays = NUMRADIUS*NUMTHETA;
plural float fraction;
plural float poly.unshot;
plural float temp;

plural Poly* distPoly; /* Polygons used in distribution*/

double et;
double cumulative-time - 0;

distPoly = old-poly-list;
if (distPoly->area < 1.) distPoly->area = 1.0; /* clamp areas from below*/

/* Initialize the radiosities */
VECASSIGN(distPoly->gather, distPoly->unshot);

START

do

{ poly-unshot = VEC.SUM(distPoly->unshot);
max-unshot - reduceMaxf(poly.unshot);
printf(" %d ", iteration);

fflush(stdout);
if (total.unshot >- 2*max.unshot) /* Print out in a. logarithmic fashion */
{ total-unshot = maxunshot;

STOP

cumulative-time +- et;

printf("\n Iteration %d total unshot rad - %f max unshot rad = %f time 15
fflush(stdout);
START

}

/* In determining the shooting patch ensure that only one PE is active
and then find the id of the polygon on that PE.

if (polyunshot -- ma.unshot)

( i - selectOne();
shooter-id a procEi.distPoly->id;
shooter-area - proc[i].distPoly->area;

VECASSIGN(shooting.rad, proc[i].distPoly->unshot);
VECASSIGNZERO(proci] .distPoly->unshot);

/* Calculate form factors for this shooting patch */
calculate-form-factors(i, shooter.id);
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/* Calculate fraction of the energy received by each patch and then
update the radiosity values of that patch.

fraction = (form-.factors/total.rays) *(shooter-.area/distPoly->area);

for (Q = 0; j < 3; j++)
{temp = distPoly->rho~j]*fraction*shooting.rad~jJ;
distPoly->unshotrj] temp;
distPoly->gather~jJ + temp;

iteration++;
}while (VEC-.SUM(shooting-rad) > MinRad);

STOP
cumulative-.time += et;
poly-.unshot =VEC-.SUM(distPoly->unshot);
max-.unshot =reduceMazf(poly-.unshot);
total-unshot = reduceAddf(poly-.unshot);
printf('\n Iteration %.d total unshot rad = %~f max unshot rad % Yf time %/5.2-f
fflush(stdout);
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ff.m for Balanced-Load Ray-Casting Approach

Copyright 1991: Amitabh Varshney, LUNC CS Dept. All Rights Reserved

FF.M

Approach: Balanced-Load Riy-Casting

This version of ff.m calculations spreads out polygons in a balanced
manner. One ray is broadcast to all the PEs. Each PE computes the

intersection with its polygon and returns the distance of the
intersected point from the ray's origin. A global reducemin is done
to obtain the PE on which the polygon that intersected the ray lies
and the ff array is then updated by a proc command. The ray-polygon
intersection code is quite tight for this version.

#include <mpl.h>

#include <math.h>

#include "host.h"

#include <sys/time.h>

extern struct timeval tm;
extern struct timezone tz;
extern double et;

extern plural int oldPoly; /* Polygon buffer *1
extern plural Poly *old.polylist; /* List of patches to be used*/
extern int maxPEpoly; /* Max no of polygons perPE */
plural float form.factors; /* Form-factor array */
float canonical-dirs[NUMRADIUS] [NUMTHETA][3];

plural PolyTag tag; /* To store precomputed polygon
data used in form-factor
calculations

*/

/*********************************************************************
initialize-form-factors
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This function intializes the data structures fzr use in ff

calculation.

initialize-form-factors 0

plural Poly* teznpPoly; 1* Polygon pointer *
float xyz[3J [3];
register int i; /* Misc counters *

START
/* Initialize the three axes vectors *
for(i - 0; i < 3; i++)
{VEC-ASSIGN..ZERO(xyz~iJ);
xyzcri] [ii = 1.0;

I. Assign the id's to polygons on PEs that hz-ve >= 1 polygon *

/* Assumes MAXPOLYS-PER-.CELL <= 4k */
old-poly-list->id =(oldPoy)? iproc: -1;

tempPoly =old-.polylist;

/* Compute the tag data for PEs having valid polys*/

if (zempPoly->id >- 0)
{register plural int numverts, m;
plural float normal[31 ;
register plural mnt 10, 11, 12;

numverts = tempPoly->numverts;

if (numverts !=4 & numver-ts !- 3)

{p..printf("ff bad numverts - %d\n",nuiverts);
exit (-1);

/* Find the center of the polygon *
VEC-.ASSIGN-.ZRO(tag poly-.center);
for (m - 0; m < numverts; m++)
VEC-ADD(tag.poly.center, tag.poly-center, tempPoly->verts[m]);

tag.poly..center[XJ numverts;

tag.poly-center[Y] 1=numverts;
tag.poly-center[Z] 1 numverts;
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1* Find the orientation of the polygon *
VEC-.ASSIGN(normal, tempPoly->eq);

normal CX] - (normal X] < 0)? -normal CX] normal CX];
normalCY] = (normalCY] < 0)? -normalC.Y] normalCY];

normalCZ] = (normalCZ] < 0)? -normalCZ] normal[Z];

/* Find the axis that is most nearly perpendicular to the normal *
if ((normal CX] <= normalCY]) A: (normal CX] <- normal CZ]))

10 =X

if ((normal CY] <= normal CX]) & (normal CY] <= normal CZ]))
10 =Y

if ((normal CZ] <= normal CX]) & (normal CZ] <= normalCY]))
10 = Z

1* Find the 2 axes that are most nearly perpendicular to the normal *

if ((normalCX] >= normalCY]) & (normalCX] >= normalCZ]))
{11 =Y;

12 Z;

if ((normal CY] >= normal CX]) & (normal CY] >- normal CZ]))
{11 X
12 Z;

if ((normal CZ] >- normal CX]) & (normal [Z] >- normal CY]))
{11 X

12 Y;

/* Compute the polygon matrix *
CROSS (tag .poly.mat £0], xyz £10], tempPoly->eq);
PLURALO 1MALIZE(tag.poly-mat [0], tag.poly.mat CO]);

CROSS(tag-poly-.matCl], tempPoly->eq, tag.poly-.mat £0]);
VEC-.ASSIGN(tag.poly-.mat [2], tempPoly->eq);

/* Compute the polygon dependent constants as a precomputation
step to speed up ray-polygon intersection code.

tag.uv[ C£0 - tempPoly->verts Ci] Cli - tempPoly->verts £0] Cli;
tag.uv CV][ CC- tempPoly->verts i] £12] - tempPoly->verts£0] £12];
tag.uvCU] Ci] = tempPoly->vertsC2] Cli] - tempPoly->vertsC0] Cli];
tag.uv[V] Ci] = tempPoly-verts [2] [12] - tempPoly->verts[0] £12];
tag.uv CU][2] = tempPoly-)verts [3] Cli] - tempPoly->vertsC[0] Cli;
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tag.uv[V [2) - tempPoly->verts £3] £12] - tempPoly->verts [0] [12);
tag.beta-denomC0] - tag.uvEV] £I)*tag.uvEU1 [03 - tag.uv[U] [1*tag.uvV] £0);
tag.betadenom[l] = tag.uvEV] [2J*tag.uv[U] £1] - tag.uv[U] [2]*tag.uv[V] [I];
tag.x = 11;
tag.y = 12;

/* Compute and store the directions of ray firings */
{ register float numr_2 = 2*NUMRADIUS;
register float m-pi_2_by-numr = 2*MPI/NUMTHETA;
register int r, t;
for (r = 0; r < NUMRADIUS; r++)
{ register float radius - sqrt((2*r + 1.)/(numr_2));
for (t = 0; t < NUMTHETA; t++)
{ register float theta = (t + 0.5)*m-pi_2_by-numr;

canonical-dirs[r] [t] [X] = radius*cos(theta);
canonical-dirs~r] £t] [Y] - radius*sin(theta);
canonical-dirs~r] [t] [ZJ = sqrt(l.0 - radius*radius);

}
}

STOP
printf ("Time for initialization 5.2f\n",et);

calculate-form-factors

This function calculates the form-factor matrices for the
polygon with id shooter-id, stored at proc i and stores these
at each processor. This assumes that the cell is stored over the
whole 4k grid (one poly per PE)

calculate-form-factors (i, shooterid)
int i, shooter_id;
{
plural Poly* tempPoly; /* Polygon pointer */
Ray defaultRay; /* Ray buffer */
plural Ray testRay;
register int j, k; /* Counters */
register int intersected-poly;
register float distance;
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register int r, t;
register float radius, theta;

tempPoly = old-.poly-list;

/* initialize form-f actors to zero *
form-factors = 0.0;

/* set ray direction *
VEC-ASSIGN(defaultay.direction, proc~i] .tempPoly->eq);

1* set ray origin to patch center *1
VEC-ASSIGN(defaultRay. origin, proc~i] .tag.poly-center);

defaultRay.distance - HUGEF;
1* ray has initial id of the shooting poly *
defaultRay.id = shooterjid;

/* Broadcast the ray to all. PEs *
/* Compute the direction to shoot the ray in, to ensure equal energy rays

using John Airey and Ming Young's method of hemisphere subdivision.
[Airey89].

f or (r - 0; r < NUNRLADIUS; r++)
{for (t -0; t < NUNTHETA; t++)

{eta~ieto[I-DTtgplymtOcnncldr~]t)
testRay.direction[Y] - DOT(tag.poly-.matCOJ, canonical..Airs[rJ [ti);
testRay.direction[Y] = DOT(tag-poly-.mat Ci], canonica.-dirs Er] [t]);

VEC.ASSIGN(testRay.origin, defaultRay.origin);

testRay.distance = defaultRay.distance;
testRay.id - defaultRay.id;

/* Each PE computes the intersection of this ray with poly(s) it has and
computes the distance and id of the poly intersected on the PE.

all if (testRay.id >= 0) intersect-.ray(&testRay);
1* Compute the shortest distance for intersection over all PEs *
distance = reduceMinf(testRay.distance);

1* Identify the polygon intersected *
intersected-.poly - -1;
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if ((distance < HUGEF) & (testRay.distance == distance))

{ k = selectOneo;
intersected.poly - proc[k] .testRay.id;

}

/* Update the form-factor array */
proc [intersectedpolyl . form.factors++;

}

/*

printf("polys hit %d not hit d\n",hit, unhit);
*/

intersect-ray

This function would intersect the given ray with all the
polygons present on the PE to which it belongs and returns the id
of the polygon it finds has the closest intersection point in the

id field of the ray. This code for this routine is based on the
ray-polygon intersection routine in [Glassner9O]. It has been
adapted for SIMD execution and all ray independent terms are

precomputed and stored in the poly-tag data structure.

intersect-ray (testRay)
plural Ray *testRay; /* Input ray *1

plural Poly* tempPoly;
plural float p[3]; /* Intersection point *1
plural int j;
register plural float t;
register plural float ndotd; /*Dot prod of normal and ray */
register plural byte inter;
register plural float alpha, beta;
register plural float uv[2];
register plural int n, m, m-1;
register plural int numverts_1;

for (j = 0; j < oldPoly; j++)

{ tempPoly - old.poly-list;

numverts_1 = LeapPoly->numverts - 1;
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/* Compute the dot product of the ray direction with the poly normal */

ndotd - DOT(tempPoly->eq, testRay->direction);

if (ndotd == 0.0) continue;

t = -(tempPoly->eq[D] + DOT(tempPoly->eq, testRay->origin))/ndotd;

/* Avoid intersecting with originating polygon*/

/* Polygon is beyond closest intersection found so far*/

if (Ct <= 0.002) I (t >- testRay->distance)) continue;

/* Calculate the point of intersection */
p[X] - testRay->origin[X) + testRay->direction[X]*t;
pEY) - testRay->origin[Y] + testRay->direction[Y]*t;
pEZ) - testRay->origin[Z) + testRay->direction[Z]*t;

/* Verify if the point of intersection is within the polygon */

uv[U] - p[tag.x] - tempPoly->verts[0] [tag.x];
uv[V] = p[tag.y] - tempPoly->verts[0][tag.y];

inter - 0;
m= 1;

do
{M1 - m - 1;

if (n - (tag.uv[U]Em.-l -- 0))
beta - uv[U]/tag. v[U] E[m];

else
beta =(uv[V*tag.uv[U] Eml] - uv[U)*tag.uv CV] Em.l)/tag.beta-denomCm-1]

if (beta >- 0.0 & beta <- 1.0)
{ alpha - (uv[n) - beta*tag.uv[n] [m])/tag.uv[n] [mre1];

inter = (alpha >= 0.0 & alpha+beta <- 1.0);
}

} while ('inter & ++m < numverts-1);

if (inter)
{ testRay->distance - t;
testRay->id = tempPoly->id;/* intersection was with a model polygon */

}
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io.m for Balanced-Load Env-Proj and Ray-Casting Approaches

* ***************************** -*****************************************

Copyright 1991: Amitabh Varshney and Howard Good, UNC CS Dept.
All Rights Reserved

IO.M
Approach: Balanced-Load Ray-Casting and

Balanced-Load Env-Projection

This program runs on the back-end of MasPar and carries out most
of the tasks including swapping in of the polygons from the from-end

#include <mpl.h*
#include <stdio.h>
#include <mpl/ppeio.h>
#include <maspar/vmeaccess.h>
#include <math.h>
#include <sys/time.h>
#include "host.h"

GLOBAL DECLS

extern die);

struct timeval tm; /* Timing stuff */
struct timezone tz;

double et;

float MinX, MinY, MinZ; /* Extents of the input dataset*/
float MaxX, MaxY, MaxZ;
plural Poly *old.poly.list; /* Lists of polygons */
plural Poly *new.poly.list;
plural int oldPoly; /* Number of polygons in old-poly.list*/
plural int newPolyCount; /* Number of polygons in new.poly-list*/
int maxPEpoly; /* Maximum no of polygons/PE */

float xroomBound[XROOMDIM]; /* Upper bounds of each virtual room */
float yroomBound[YROOMDIM];
float zroomBound[ZROOMDIM];
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1* Low level C feile i/o routine to read in large amounts of data *
bufread(fd ,ptr ,size ,num. items)
mnt fd;
char* ptr;
int size;
i.nt num. items;
{if (read(fd, ptr, size*uum-.items) < 0)

die(I"bufread" ,"bad read", 1);

polysto-.pe

This reads in the polygons from the .mp file and distributes them
on PEs.

int polys-to.pe(mp-.fp)
int mp-.fp;
{ mt numpoly,maxpoly,minpoly;
mnt n;
int initPEpoly; /* initial no of polygons per PE *
mnt total-.polys; /* number of polygons to be read *
plural mnt check;

plural Poly* tempPoly;

mnt cmd;

cmd = MPS8;
p-.fcntl(mp-.fp,F_.SETPIO,cmd);

/* determine the number of polygons to be read *
bufread(mp-.fp, (char *) &total..polys, sizeof(int), 1);

initPEpoly a(int) (total-.polys/nproc);
maxPEpoly -initPEpoly*6;

fprintf(stdout,"polys %d nproc %d polys/pe %d poly-.size Yd\n', total-polys,
nproc,initPEpoly, sizeof(Poly));
fflush(stdout);
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/* Allocate PE memory *
P-.ALLCN(oldpolylist, Poly, initPEpoly + 1, "polys-to-pe");
/* P-.ALLOCN(newpoly.list, Poly, maxPEpoly, "polys-to-pe"); *

/* Read in polygons to PEs from the file *
check. = p-read(mp-fp, (\plural char *) old-.poly-.list, sizeof(?oly)*inPpy

tempPoly = old-.poly..list + initPEpoly;

check += p-read(mp..fp, (plural char *) tempPoly, sizeof(Poly));
if (check -- 1) die ("polys-.tope"l,"error reading file",I);

/* Determine oldPoly for each PE *
oldPoly = check/rizeof(Poly);

numpoly = reduceAdd32(oldPoly);
maxpoly = reduceMax32(oldPoly);
minpoly = reduceMin32(oldPoly);
printf("lold polys - %d; max a %d, min - %d\n",numpoly,maxpoly,rninno>-v);

return(total-.polys);

Start the radiosity iterations
Carry out the patch - patch energy exchange

dist.ppQ);

Carry out the exchange of energy laden virtual walls
xchg...wallso;

pe-.t o-.polys

This writes out the polygons from the PEs to a .O.patch file.

1* for now it writes only the polys that have received any energy *
pe..to-.polys (fp)
FILE* fp;
{ mt i, j, numverts;
plural Poly* tempPoly;
float gather[31;
float gather-.sumn;

tempPoly = old-poly-list;
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for (i - 0; i < nproc ; i++)
{ if (proc[i] .tempPoly->id >= 0)

{ numverts = proc[i].tempPoly->numverts;
gathersum = 0;

for ( = 0; j < 3; j++)
gather-sum += gather[j] = proc[i] .tempPoly->gather[j];

if (gather-sum > 0)
{ fprintf(fp,"%g %g /g %d %d %d %,d 0 0 0 0 0\n",gather[RED,gaher[GREEN]

gather[BLUE], (int)proc[i] .tempPoly->colors [0] [RED],
(int)proc[i].tempPoly->colors [0] [GREEN],
(int)proc [i] .tempPoly->colors [0] [BLUE], numverts);

for(j = 0; j < numverts; j++)
fprintf(fp,"%g %g %g\n",proc[iJ .tempPoly->verts[j] [X],
proc[i] .tempPoly->verts[j) [Y], proc[i] .tempPoly->vertsfj] [Z]);

}
}

determine_-extents

This routine determines the extents of the polygon dataset.
It takes into account the coarse cell lengths to determine the
extents which will be represented on the DPU array once the
balancing is done.

determine_ extents 0
{ plural int i, j; /* Miscellaneous counters */
plural float x, y, z; /* Vertex values */
plural Poly* plural tempPoly; /* Current polygon */
plural float minx, miny, minz; /* Local extents on each PE */
plural float maxx, maxy, maxz;

/* Determine the local extents */
minx - miny - minz = HUGEF;
max% = maxy - maxz = -HUGEF;
for (i = 0; i<oldPoly; i++)
{ tempPoly a oldpoly_list + i;
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if (tempPoly->numverts < 3 11I tempPoly->numverts > MAXVERT){
p-printf("ERROR: proc %d numverts = %d\n",iproc,tempPoly->nunverts);
exit (1)

for (j = 0; j<tempPoly->numverts; j++)
{x = temppoly->vertscjl CX3 ;
y = tempPoly->verts~j][Y];
z = tempPoly->verts~j][ZJ;
minx = MIN(minx,x);
miny - MIN(miny,y);
minz = MIN(minz,z);
maxx = MAX(maxx,x);
maxy = MAX(maxy,y);
maxz = MAX(maxz,z),

/* Determine the global extents *

MinX = reduceMinf(minx);
MinY = reduceMinf(miny);
MinZ - redUCeMin! (Minz);
MaxX - reduceMax! (maxx);
MaxY - reduceMaxf (mazy);
MaxZ - reduceMaxt(maxz);

print! ("Minx %.6.2! MaxX %.6.2f MinY %.6.2f MaxY %.6.2f MinZ %.6.2f MaxZ %6.2!f\n",
MinX ,MaxX,MinY,MazxY,MinZ,MaxZ);

/* Take into account the global patchification grid aligned along the axes*/

MinX - f..floor(MinX/XCELLLENGTH) * XCELLLENGTH;
MinY z f-floor(MinY/YCE..LLENGTH) * YCELLLENGTH;
MinZ - f-floor(MinZ/ZCE..LLENGTH) * ZCELLLENGTH;
MaxX - f-.ceil (MazX/XCELLLENGTH) * :CELLLENGTH;
MaxY = f-.ceil(MaY/YCELLL2NGTH) * YCELLLENGTH;
MaxZ -f-.cei(MaZ/ZCELLLENJGTH) * ZCELLLENGTH;

printf ("Minx %.6.2f MaxX %.6.2f MinY %.6.2f MazY %.6.2f MinZ %6.2f MaxZ Y.5.2\nII,
MinX,MaxX,MinY,MazxY,MinZ,MaxZ);
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area

This routine determines the area of a plural polygon defined by
the vertex array 'vert' and having 'numverts' number of vertices
For this the routine considers the polygon to be composed of
triangles and then computes the area of each triangle by taking
half of the magnitude of the cross product of two of its sides.

plural float area(verts, numverts)
plural float verts[MAXVERT] [3); /* Vertex array */
plural int numverts; /* Number of vertices */

plural int ij,k;
plural float area = 0.0;
plural float vl[33, v2[31, v3[3];

for(i=O; i < numverts - 2; i++)
{ j - i+1;

k i+2;

v1[X] - verts[j] X] - verts[i] [X];
vICY] = verts[j] [Y] - verts[i] [Y];
vlEZ] verts[j][Z] - verts[i]iZ;

v2[X] - verts[k]X] - verts[i][ XI;
v2[Y] = verts[k][] - verts[i][Y];
v2[Z] = verts[k] [Z] - verts[i] [Z);

v3[X] = vl [Y]*v2[Z] - vitZJ*v2[Y];
v3[Y] = -vl [XJ*v2 [Z] + v. [ZIJ*v2 [X;
v3[Z] i vLX]*v2C Y] - vl Y] *v2 [X;

area += 0.5*fp.sqr(v3X]*v3X] + v3[Y]*v3[Y] + v3[Z]*v3[Z]);
}
return area;

int option-handler(ac; av)
int ac;
char *av[];
{ register int i, ok = 1;
register char *C;
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for (i= 1; i <ac & av[i][O] == '-'; i++)
for (c = &(av[i][1]); *c; c++) switch (*c) {

case ? ':

printf(" < fnamel.mp > fname2.0.patch \n");

break;
default:

fprintf(stderr, "%s: unknown option -.c\n", av[O], *c);
ok = 0;
break;

}

return (ok ? i : 0);

Main

main(ac, av)
int ac;

char *av[];
{ int options;

int mp-fp; /* Input binary file */
char filename[128J; /* Input file name
int total-polys = 0;

FILE* fp;

if (!(options = option-handler(ac,av))) die("io","bad options",l);

/* open the input file in read.only mode */
if ((mp.fp = open(av[1],0)) <= -1)

die("io","can't open input mp file",l);

/* open the output file in write mode */
if ((fp % fopen(av[21,"w")) -= NULL)

die("io","can't open output .0.patch file",t);

/* Read in the polygons*/
START
total-polys = polys.to-pe(mp-fp);
STOP
close (mp-fp);

/* Print out the timing stats*/
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fprintf(stdout,"Xf erred %d polys to PEs in %.5.2f secs\n",total.polys,et);

fflush(stdout);

/* Determine the extents of the dataset - used in balancing

determine~exten-ts 0;

/* Perform the one-time initialization for the form-factor determinations ~
initialize-form-factorso;

/* Distribute the energy in the environment *
START
dist-energyo;
STOP

fprintf(stdout,"Time for energy distribution %5.2f secs\n",et);

fflush(stdout);

1* write out the patches *
START
pe-to..polys(fp);
STOP
fclose(fp);

/* Print out the timing stats*/

fprintf(stdout,"Wrote out patches in %5.2f secs\n',et);

fflush(stdout);
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host.h for Balanced-Load Env-Proj Approach

I***********************************************************************
This file is the main include file and contains the constants, macros
typedefs used.

CONSTANTS

#define A 0 /* Generally use4 with plane equation*/
#define B 1
#define C 2
#define D 3

#define X 0 /* Generally used with vertices */
#define Y 1
#define Z 2
#define W 3

#define SKEWX 4 /* Used for the orientation of the polygon*/
#define SKEWY 5
#define SKEWZ 6

#define RED 0 /* Colors associated with the polygon*/
#define GREEN 1
#define BLUE 2
#define ALPHA 3 /* Transparency option with radiosity in

future? .... right now for data alignment*/

#define LINORMMIN le-4 /* Tolerance limit for computation errors

#define HUGEF le+10 /* Some huge floating pt number */

#define EAST 0 /* Generally used for virtual walls */
#define WEST 1
#define NORTH 2
#define SOUTH 3
#define FLOOR 4
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#define CEILING 5

#define U 0
#define V 1

#define PIXELS I /* Hemi-plane pixels per PE */
/* These are ordered as: 0 1

23
*1

#define PIX.ROW 1 /* No of pixels per PE per row- sqrt(PIXELS) */

#define NPROC 4096 /* Same as nproc but facilitates array decls*/
#define NXPROC 64 /* Same as nxproc but facilitates array decls*/
#define NYPROC 64 /* Same as nyproc but facilitates array decls*/
#define NXPROC_1 63
#define NYPROC_1 63

#define MAX.POLYPIXELS 1100 /* Max no of item-buffer pixels that a single
polygon can cover.

#define MAX-OVERLAP 64
/* Maximum no of polygons that get projected on same

leftmost bounding edge in x on shooter polygon */
#define MAXPOLYS 40960 /* Maximum no of polygons in all */
#define MAXVERT 4 /* Maximum no of vertices in a polygon */

#define MAXPOLYSPERCELL 4096 /* Maximum no of polys in a cell */

#define INITEMIT
1000.0 /* Initial radiosity value for an emitter *1
#define TOL 10.0
/* Terminal radiosity value for local iters*/

MACROS

#define DOT(a,b) (a[0*b[Oj + a[1]*b[l] + a[2]*b[2]) /* Dot product */
#define CROSS(a, b, c)

{ a[0] = b[l]*c[2] - c[1J*b[2]; \

a[1] = c[0]*b[2] - b[O]*c[2]; \

a[2] - b[O]*cCl] - c[0]*b[1]; \
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#define PLURAL-OR4ALIZE(a, b)
{plural float magnitude; \

magnitude= fp-.sqrt(bEO]*b[O] + b~t] *b Et] + bC2] *b[2]); \
a [0] = b [0]/magnitude; \
a[l] = b[1]/magnitude; \
a[21 = b[2J/magnitude;\

I
#define VEC_~SUN(a) (alO] + a[l] + a[2])
#define VEC.ASSIGN(a, b) \

{a[O] = b[O]; all] -b~l]; a[2] = b[2];j
#define VEC4..ASSIGN(a, b) \

{a[o] = b[01; all] = b[t1; a[2] = b[21; a[3] b[31;}
#define VEC.ASSIGN-ZERO(a) \

{a[o] = 0; all] - 0; a[2] = 0;1
#define VEC-ADD(a, b, c) \

{aEO] - bEO] + CEO]; a~l] - b[1] + c~l]; a[2] bE2J + cC2];}
#define VEC..MtL(a, b, c) \

{aEO] - bEO3 * CEO]; a~l] - bEl] * c~t]; a[2] b[2J * cE2];}

#define FROM-MP.TO-IEEE-INT(a) \
((a << 24) & Oxffoooooo) I((a << 8) & OxOOffOooO)\
1((a >> 8) & OxOOOOffOO) I((a >> 24) & 01000000ff))

#define FROM-.MPTOIEEEFLOAT(a) \
(((a << 8 & OxOOOOffoO) I(a >> 8 & OxOOOOOoff)\
1(a << 8 & OxffOOOOOO) (a >> 8 & OxOOffOoOO)) -1

#define MIN(X,y) (((X)<(y))?(X):(Y)) /* Minimum of two nos*/
#define MAX(xy) (((X)>(Y))?(X):(Y)) 1* Maximum of two nos*/
#define MINX ((X)«1l) /* Indexing in extent's array*/
#define MAXX (()<)i
#define MINY ((Yc<<i)
#define MAXY (()<)i
#define MINZ (Z<I
#define MAXZ (()<)l
#define MINEX(C) ((C)<<1)
#define MAXEX(C) (()<)I

/* Allocate N items of type TYPE at pointer location PTR on ACU or Front End*/
#define ALLOCN(PTR,TYPE,N,RTN)

if ('PmR = (TYPE *) malloc((unsigned) (N)*sizeof(TYPE)))){
printf(I'malloc failed\n");\
exit(-1);\
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/* Allocate N items of type TYPE at pointer location PTR on the PEs */

#define PALLOCN(PTR,TYPE,N,RTN)
if (!(PTR = (plural TYPE *)p.malloc((unsigned) (N)*sizeof(TYPE)k) {

p-printf("p-malloc failed\n"); \
exit(-t); \

}

#define START gettimeofday(&tm,&tz);\

et - (tm.tv-sec)+ (0.000001* (tm.tvusec));

#define STOP gettimeofday(&tm,&tz);\

et = (tm.tv-sec)+(0.000001*(tm.tvusec)) - et;

/* for((v)=(f)->verts[(i)=0O;(i)<(f)->n;(v)=(f)->verts[++(i)J) */

TYPEDEFS

typedef float Vec3C3];
typedef float Vec4E41;

#ifndef byte-defined
typedef unsigned char byte;
/* Used to define colors and form-factors*/
#define byte-defined 1
#endif

/* -POLYGON- */
typedef struct polygon

{ int numverts; /* Number of vertices */

float verts[MAXVERT] [3] ;/* Points of the polygon (quad/triangle) */
Vec4 eq; /* Eq of the polygon (quad/triangle) */

byte colors[MAXVERTJ[4];/*Colors at the vertices */

float unshot[3J; /* Unshot rad value for front & back face w/

float gather[3]; /* Accumulated energy for front & back face */
float rho[3]; /* Reflectance for front and back face */
float area; /* Area of the polygon *1
int id; /* Polygon id */

} Poly;

/* -Miscellaneous data used per poly during ff calc-*/
typedef struct poly-tag
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{ float poly-center[3]; /* Center of the polygon */
int x, y; /* Axes along which the polygon lies *1
float uv[2] [3]; /* Some variables to avoid repeated calc*/

float beta-denom[2] ;
float poly-matC3][4]; /* Used in orienting rays to be fired */

} PolyTag;

1* - Tuples used during filling up of item buffers -

typedef struct ib-tuple
{ unsigned short src-pe;
unsigned short dest.pe;

byte dest-sub-pixel;
byte south;
byte east;
float data;

} IBTuple;

typedef union {float f; int i; } float~bits;

extern char* malloco;
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dist.m for Balanced-Load Env-Proj Approach

/**********************************************************************

Copyright 1991: Amitabh Varshney, UNC CS Dept. All Rights Reserved

DIST.M

Approach: Balanced-Load Environment-Projection

This part of the code is responsible for distributing the energies

#include <mpl.h>

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include "host.h"

extern struct timeval tm; /* timing variables */
exter- struct timezone tz;

extern int maxPEpoly; /* max no of polys per PE */
extern plural Poly* old.poly-list; /* Polys to be used */
extern plural int oldPoly; /*No of polys in old.polylist*/
/* Form factor array */
extern plural float form-factors;
extern float MinRad;

I/ ********************************************************************

dist.energy

Carry out the distribution of energies from patch to patch within
the current cell. This assumes that the form-factors have been
calculated and the polygons are properly arranged with 1 polygon
per PE.

dist-energy()

{ float maxunshot; /* Maximum unshot energy */
float last-unshot = HUGEF;

104



float shootingrad[3J; /* Shooting patch radiosity */
float shooting-area; /* Area of the shooting-patch */
float current-unshot;

float leakage[3];
float leakage-factor; /* Fraction of energy leaking from
beneath the single plane */

int i, j, iteration - 0;
plural float fraction;
plural float poly.unshot;
plural float temp;
plural Poly* distPoly; /* Poly used in distribution*/

double et;
double cumulativetime = 0;

distPoly = old-polylist;
if (distPoly->area < 1.) distPoly->area = 1.0; /* Clamp all areas from below-

/* Initialize the radiosities */
VECASSIGN(distPoly->gather, distPoly->unshot);

VECASSIGNZERO(leakage);

START

do
{ poly.unshot - VECSUM(distPoly->unshot);
max-unshot - reduceMaxf(poly-unshot);
current-unshot - reduceAddf(poly-unshot);

if (last.unshot >- 2*mazxunshot)
{ last-unshot = max-unshot;

S'iOP

cumulative-time += et;

fprintf(stderr,"Iteration %d total unshot %f max unshot %f time Y.5.2f sec
START

}

/* In determining the shooting patch ensure that only one PE is active
and then find the id of the polygon on that PE.

if (polyunshot -= max.unshot)

{ i = selectoneo;
shooting-area - proc[i].distPoly->area;
VECASSIGN(shooting-rad, proc[i].distPoly->unshot);
VECASSIGNZERO(procCi].distPoly->unshot);

}
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/* Calculate form factors for this shooting patch */
calculate-form-factors (i) ;

/* Calculate fraction of the energy received by each patch and then

update the radiosity values of that patch.

if (distPoly->id >= 0)

{ fraction = formfactors*shooting-area/distPoly->area;

for (j = 0; j < 3; j++)
{ temp = distPoly->rho[]*fraction*shooting-rad[j];
distPoly->unshot[j] += temp;

distPoly->gather[j] +- temp;
}

}
iteration++;
leakage [RED] += shoot ing.rad [RED] *shoot ingarea;
leakage[GREEN] += shootingrad[GREEN] *shootingarea;
leakage [BLUE] += shooting.rad [BLUE] *shooting.area;

}
/* while (VECSUM(shooting.rad) > MinRad); *1

/* Find the energy lost from beneath the single-plane */
leakage-factor - 1.0 - reduceAddf(form-factors);
leakage[RED] - leakage-factor;
leakage[GREEN] *- leakage.factor;
leakage[BLUE] *= leakage-factor;

polyunshot = VECSUM(distPoly->unshot);

max-unshot - reduceMaxf(poly.unshot);
current-unshot - reduceAddf(poly.unshot);
STOP
cumulative.time +- et;
fprintf(stderr,"Iteration %d total unshot %f max unshot %f time 7.5.2f secs cm

fflush(stderr);

/* Add the ambient component to the final solution computed */
add.ambient(distPoly, leakage);

add-ambient
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This routine adds an ambient component to the radiosity solution.
In addition to the unshot energy with the individual polygons, this
includes in the energy leaking out from under the single plane also
in calculating the ambient term.

add-ambient(distPoly, leakage)
plural Poly* distPoly;
float leakage [3] ;
{float total-area;
plural float global~formfactor;
float global-.av..rho [3],
float ambient [31 ;

total-area = reduceAddf(distPoly->area);
global-.formfactor = distPoly->area/total-area;

/* find the global average reflectivity */
global.av-.rho [RED] reduceAddf(distPoly->rho [RED] *distPoly->area)

/total-...rea;
global-av-.rho [GREEN] -reduceAddf (distPoly->rho [GREEN)*distPoly->area)

/total..area;
global-av..rho [BLUE) - reduceAddf (distPoly->rho [BLUE] *distPoly->area)

/total-.area;

ambient [RED] = (leakage [RED] /total-.area +

reduceAddf (distPoly->unshot [RED) *global-formfactor))
/(1.0 -global.av-.rho[RED]);

ambient[GREEN] (leakage[GREEN]/tota..area +

reduceAddf (distPoly->unshot [GREEN) *global-formf actor))
/(1.0 -global-av.rhoGREEN]);

ambientBLUE] u(leakage[BLUE)/total-.area +

reduceAddf (distPoly->unshot [BLUE] *globalfo-mf actor))
/(1.0 - global-av-.rho[BLUE]);

fprintf(stderr,"a.mbient component is %f %f %.f\n"l,ambientCRED],
ambient [GREEN], ambient [BLUE]);

distPoly->gather[RED] += distPoly->rho [RED] *ambient [RED];
distPoly-)gather[GRE-EN] +- distPoly-rho[GREENJ*ambient [GREEN];
distPoly->gather [BLUE] += distPoly->rho[BLUE] *ambient [BLUE];
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ff.m for Balanced-Load Env-Proj Approach

I************************************************************************
Copyright 1991: Amitabh Varshney, UNC CS Dept. All Rights Reserved

FF.M

Approach: Balanced-Load Environment-Projection

This version of ff.m calculations spreads out polygons in a balanced
fashion over the whole grid without any regards to the geometry of
the input dataset. Then a single-plane of a prespecified side aid
height and resolution is used to perform environment-projection.

#include <mpl.h>

#include <stdio.h>

#include <math.h>
#include "host.h"

#include <sys/time.h>

#define GETRIGHTNEIGHBOR(from, to) \
to - xnetE[l].from; \
if (ixproc -= nxproc - 1) to - xnetS[lI.to;

extern struct timeval tin;
extern struct timezone tz;
extern double et;

extern plural int oldPoly; /* Polygon buffer /
extern plural Poly *old.poly-list; /* List of patches to be used*/
extern int maxPEpoly; /* Max no of polygons perPE */
/* Form-factor array */

plural float form-factors;
plural PolyTag tag;
plural IBTuple final-item[PIXELS]; /* Buffer containing the final

item-buffers (after
z-buffering) */

plural unsigned short num-items[PIXELS]; /* Number of items
plural IBTuple temp-item[MAXOVERLAP][PIXELS]; /* Buffers used in the

intermediate stages of scan-conversion on
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projection-plane *
plural IB-.Tuple item;
float Plane-Side = 3.0; /*For details refer [Recker9OJ*/
float Planeileight = 1.0;
float x-.pixel-.extent; 1* Extent of a single-plane
float y-.pixel-.extent; pixel */I
plural float canonical-.ffEPIXELSJ; /* Delta form-factor for each

pixel *

init ialize-.form-f actors

This function intiaJlizes the data structures for use in ff
calculation.

initialize-.formfactorso(

plural Poly* tempPoly; 1* Polygon pointer *
float xyz[3] [3);
register mnt i. j; /* Misc counters *
plural float centerCPIXELS) [3];
plural float projected-.area[PIXELS];
float sigma-.ff - 0;

START

x..pixel-.extent - PIX-.RW*(NXPROC - 1)/(2*Plane..Side);
y-.pixel..extent - PIX..ROW*(NYPROC - 1)/(2*Plane-.Side);

1* Initialize the three axes vectors *
for(i -0; i < 3; i++)
{VEC_.ASSIGN_.ZERO(xyz~i]);
xyz[i] Ci) = 1.0;

/* Initialize the form factor matrices at each processor *
form-.factors = 0.0;

1* Initialize the canonical form factor fractions *

for (i = 0; i < PIXELS; i++)
{center~i]iX] = Plane..Side*(2*(ixproc + (1 + (i %PIX.ROW))/(PIXELS*1.O))/nx
center~i]CY] = Plane-.Side*(2*(iyproc + (1 + (i IPIX.ROW))/(PIXELS*1O0))/ny
center[i]CZ] = Plane-Height;
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/* Area of each hemicube pixel = total area! total no of pixels
= (2*Plane-Side)-2 / (PIXELS*nproc) ; as each side of
hemiplane is from -Plane-Side to Plane-Side

projected-area~iJ = DOT(center[i], center[i]);
projected-.area~iJ = 4*Plane_,Side*Plane-Side/

(PIXELS*nproc*MPI*projected...rea[i*proected~area~i]);
I

for(j = 0; j < PIXELS; j++)
canonical-ff[j] projected-area~j];

1* Assign the id's to polygons on PEs that have >= 1 polygon *

./* Assiimes MAXPOLYS-PER CELL <= 4k *,/
old-poly-list->id a (oldPoly)? iproc: -1;

tempPoly = old-poly-list;

1* Compute the tag data for PEs having valid polys*/
if (tempPoly->id >= 0)
{register plural mnt naxmverts, m;
plural float nornal[3);
register plural mnt 10;

numverts = tempPoly->uumverts;

if (numverts !=4 & numverts !- 3)
{p-.printf(I"ff bad numverts - %d\n" ,numverts);
exit (-1);

/* Find the center of the polygon *
VEC-.ASSIGN...-ZERO (tag. poly..center);
for (m = 0; m < numverts; m++)

VEC...ADD(tag.poly-.center, tag.poly..center, tempPoly->verts~mJ);

tag.poly-ceinterCX)I- numverts;
tag-poly-centerYJ I numverts;
tag.poly-.center[Z] I numverts;

/* Find the orientation of the polygon *
VEC-.ASSIGN(normal, tempPoly->eq);
norma.[XJ = (normal[X] < 0)? -norma.EXJ normalfX.;
normal[YJ - (normal[Yj < 0)? -normal[YJ normal[Y];
normalCZ] = (normal[Z] < 0)? -normal[Z] normal [Z];
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/* Find the axis that is most nearly perpendicular to the normal */
if ((normal[X] <= normal[Y]) & ('ormal[X] <= normal[Z]))

10 W X;

if ((normal[Y] <= normal[X]) & (normalCY] <= normalCZ]))
10 = Y;

if ((normalCZ] <= normal[X]) & (normalCZ] <= normal[Y]))
10 = Z;

/* Rotate the axis most nearly perpendicular to normal to x-axis
CROSS(tag.poly.mat [0], xyz[i0], tempPoly->eq);
PLURALNORMALIZE(tag.poly-mat [0], tag.polymat [0]);

/* Rotate the cross product of normal and poly-mat[0] to y-axis */
CROSS(tag.poly-mat[l], tempPoly->eq, tag.poly-mat[0]);
/* Rotate the normal to the z-axis */
VECASSIGN(tag.poly-mat [2], tempPoly->eq);

}
else tempPoly->numverts - 0;

STOP
fprintf(stderr,"Time for initialization .5.2f\n",et);

}

calculate-form-factors

This function calculates the form-factor row for the
shooting patch i. The four vertices of the polygon are projected
on to the single-plane. Their extents are taken and this area of
projection is filled-up first along one and then along the other
di mension.

calculate-form-factors (i)

register int i;
{
plural Poly* tempPoly; /* Polygon pointer */
PolyTag shooter-tag;
register plural float direction[3];

register plural float unitvec[3];
register plural float canonical-dir[3];



register plural float extent[4J;
register plural int pix[4];
register plural float dist;
register plural float magnitude;
register plural mnt m, n, invalid, count;
register plural short j, new-j, q, new-.q;
register mnt p, equinun;
register plural byte init..num-items[PIXELS];

tempPoly =old..poly-.list;
form..factors = 0.0;

VEC..ASSIGN(shooter-tag.poly-center, proc[iJ .tag.poly.center);
VEC-ASSIGN (shooter-tag .poly-.mat [0], proc Ei . tag. poly.mat [0]);
VECASSIGN(shootertag.poly..mat[1], proc[iJ .tag.poly-mat[1J);
VEC-ASSIGN(shooter-tag.poly-mat[2], proc[i] .tag.poly-mat [2]);

extentCMINX] = extentCMINY] =Plane-Side;
extenitCMAXX] = extent [MAXY] = -Plane-.Side;
dist = 0.0;
invalid = 0;

for(j = 0; j < tempPoly->:.,&zierts; j++)

VEC-.ADD(direction, -empPc'_ .->vertr['1, -shooter.tag.poly-.center);

magnitude = DOT(direction, direction);

if (magnitude > Ll-ORM-.MIN)
{dist += magnitude = fp-sqrt(magnitude);

/* Find the unit direction to each vertex *
unitvec[0J - direction[0] /magnitude;
unitvec [1] = direction [1]/magnitude;
unitvec [2] = direction [2] /magnitude;

/* Transform this unit vector to the normal space of shooter polygon *
canonicaJ..dir[X] - DOT(shootertag.poly-mat[0J, unitvec);
canonical-dir[Y] - DOT(shooter..tag.poly-.mat[1], unitvec);
canonical-dir[Z] = DOT(shooter-.tag.poly-.mat[2], unitvec);

/* Find the extents of poly on the hemi-plane at z = Plane-~Height *
if (canonical-dir[ZJ > L1..NORM-.MIN) /* Consider only -4-e direction-/
f canonical-dir [X] - canonical-dir [X] *Plane.Height/canonical-dir [2]1

canonical-dir [Y] = canonical-dir [Y] *Planeleight/canonical-dir []l-
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extent EMINXI = MIN(extent[MlNX), canonical-.dir[X]);
extent EMINY] - MlN~extent EMINY], canonical-.dir[Y]);
extent CMAXX] = MAX(extent:MAXX], canonical-.dir CX]);
extent EMAXY] = MAX(extent[MAXY], canonical-.dirCY]);

else invalid = 1;

if (tempPoly->nuinverts > 0)
dist /= tempPoly->numverts;

if ((extentMNX] < -Plane-.Side) I (extentMAXX] > Plane-.Side) I(extent[YIN,,Y
(extent CMAXY] > Plane-.Side) I (extent CMINX] > extent CMAXX]) I (extent ~iNi

invalid = 1.;

/* Find the bounding item buffer pixels to which data will need to be sent '
pixCMINX] = (plural int)((extent[MlNX] + Plane-.Side) * x-pixel-extent);
pixEMINY] = (plural int)((extent[MlNY] + Plane-Side) * y-.pixel-extent);
pix[MAXX] = (plural int)((extent[MAXX] + Plane-.Side) * x-.pixel...extent);
pixCMAXY] - (plural int)((extentCMAXY] + Plane-.Side) * y-.pixel-.extent);

/* Set up the transmission tuple */
item. dest..pe apix CMINX] /PIX-.ROW + pix CMINYJ *nxproc/PIX.ROW;
item.src-.pe - iproc;
item.south - pixMAXYI - pix[MINY];
item.east - pix[MAXX] - pixCMINX];
item.data - dist;
item.dest-.sub-.pixel - pixCMINX3 % PIX-.ROW + (pix[MINY3 % PIX-.ROW)*PIX.ROW;

all for (i = 0; i < PIXELS; i++)
{temp..item[oJ [i] .data - final.-item Ci).data - HUGEF;
temp-.item~o] Ci].east - temp-tem[oJ Ci].south = 0;

m = 0;
if (!invalid)
{sp-.rsend(iten.dest-.pe, (plural char*)&item,

(plural char* plural)& (temp..item £0) item .dest..sub..pixel]),

sizeof(IBrTuple));
router~itemdest..peJ.m +- 1;

/* Find the number of balanced tuples on each PE *
equinum = reduceMax32(m);
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if (equinumn > 1) fprintf(stderr,"max rout m %d tI,equjnlml);

/* Initialize num-items */

for(i = 0; i < PIXELS; i++) jnit-num-items[iJ num-items[il (temp...e::e7'C

1* Distribute the item-buffers south *
all for(i = 0; i < PIXELS; i++) 1* Do for each virtual pixel *
{q = new-.q = i

j= new-j = init-.num-items[iJ - 1; /* (m > 0) ? 0 :-1; *

count = (Q < 0)? j :temp-itemj]Cq].south;
/* Start moving this ib-.tuple south if this is valid *

all while (count > 0)
Ccount--;
if (new.j > MAX-OVERLAP)

p-printf(Iliproc %d, overlap %d\n",iproc,new..);

q = new-q;
if (temp..item~j3[q].data < finalitem~qj.data)/* Do z-buffering *

{finaJ-item~qJ .data - temp-item~j] [q] .data;
final-item~qJ .src-.pe = temp-item~jj Eq].src-.pe;

new-.q = (q + PIX..ROW) % PIXELS;
/* Locate the virtual south neighbor *

if (new..q >q) /* We don't need to xsend to south PE yet *
{new.. = num-.items~new-.q]++;
temp..item~new.jJ Enew.q] .src.pe - temp-.item[j] [q] src-pe;

temp...item~newjj new..q] .east - temp-itemrjJ [q] .east;

temp-.item~new..jJ [new-.q] .data - temp..item~jJ [q] .data;
j =new-j;

else /* xsend to the south PE *
{ if (iyproc < NYPROC-.1) /* avoid wraparound *

{xnetS[1J -count =count;

xuetS[t3 .new.q nwq
new.. - xnetSClJ.num.items~new.qJ;
xnetS[iJ .num..items[nev-.q] - nev-.j + 1;

nev..q - xnetS:12.n(...Tq; /* regenerate new-.q for next step only *
pp-.xsend(-1, 0, (plural char* plural)temp.item~j] EqJ,

(plural char* plural)&temp-.item~new..jJ[new-.qJ, sizeof(IB-Tuple));
xnetS [1] .new-.q - ne...q; /* restore new-.q now*/
xnetS [1J. j = new.j;

else 1* disabl.e this ib..tuple *
count = 0;
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1* Distribute the item-buffers east *
all
for(i =0; i < PIXELS; i++) 1* Do for- each virtual pixel *
{q =
for(j - 0; j < num...items~i]; j++) /* Do for each ib-tuple *

{count = temp..item~j] Ci).east;
item.data - temp-.item.[j] Ci) .data;
item.src-.pe - temp..item~j] Ci].src-.pe;
all while (count > 0)
{count--;
if (item.data < final.item~q) .data)I* Do z-buffering *
{final-tem~q] .data -item.data;
finalitem~q] .src-.pe = item. src-pe;

new-.q - (q + 1) % PIX-.ROW;
if (new-q > q) /* We do not need to xsend to east PE *

q - new-.q;
else /* We need to xsend to east PE *
{ss-.xsend(O, 1, (plural char*)kitem, (plural char*)kitem, sizeof(IB.Tuple));
xnetE~l.count - count;
xnetE [1] q = new-.q;

1* Update the form factors for the finally selected PEs *
form-.factors - 0;
for(i -0; i < PIXELS; i++)
{if (f inal-.item[ij .data < HUGE)

dist -canonicaJ...ff i);
else
{dist -0;
final-.item~i).src-.pe -iproc;

form-factors += sendwithAddf(dist, fJnal~item~i] .src..pe);



dist.m for Object-Space Ray-Casting Approach

/**********************************************************************
Amitabh Varshney Howard Good

DIST.M

Approach: Obj ect-Space Ray-Casting

This part of the code is responsible for distributing the energies
from local and global iterations.

#include <mpl.h>
#include <stdio. h>
#include <math.h>
#include "host.h"

extern int maxPEpoly; /* max no of polys per PE */
extern plural Poly* oldpoly.list; /* Polys to be used */
extern plural int oldPoly; /*No of polys in old.poly-list*/
/* Form factor array */
extern plural byte form-factors[MAXPEPOLYSI [MAXROWPOLYS];
/* Rays stored in walls */
extern plural Ray wall-rays[NUMWALLS] EMAXRAYS];
/* No of rays in each wall */
extern plural int wallcount [NUMWALLS];

dist-pp

Carry out the distribution of energies from patch to patch within
each virtual room.

distpp()
{ plural Poly* plural tempPoly;
plural Ray tempRay;
plural int i,j;

int n,r;
plural float procRadSum = 0.0;
plural float shootingEnergy;
plural float tempEnergy;
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plural Packet shootingPatch;
plural int shootingPatchValid =0;

plural int shooter;
plural float deltaRad,tempRad;
float totalUnshotRad;

1* Initialize procRadSum *
for(i =0; i < oldPoly; i++)
{tempPoly - old.poly..list + *
for (n =0; n <3; n++)

procRadSum *tempPoly->unshotRad En];

totalUnshotRad =reduceAddf (procRadSum);
printf ("Total unshotRad radiosity - %f\n",totalUnshotRad);
fflush(stdout);

/* Start energy zfer *
while (totalUnshotRad > TOL)

shooter = -1;
shootingEnergy a0;
shootingPatchValad - 0;

/* Choose the shooting patch on each PE as the brightest patch *
for (i = 0; i < oldPoly; i++)
{tempPoly - old..poly.list + i
tempEnergy - tempPoly->unshotRadRED)+

tempPoly->unshotRad EGREEN] +

tempPoly-)unshotRad EBLUE];
if (tempEnergy > shootingEnergy)
{ shoot ingEnergy = tempEnergy;

shooter =i;

/* If a shooting patch exists, compose an energy packet *
if (shooter >- 0)
{tempPoly - old..poly...list + shooter;
shootingPatch.unshot (RED] - tempPoly->unshotRad[REDJ;
shoot angPatch unshot (GREEN] atempPoly->unshotRad (GREEN];
shootingPatch unshot (BLUE] =tempPoly->unshotRad (BLUE];
shoot ingPatch. area - tempPoly->area;
shootingPatch.id - tempPoly->id;
shootingPatchValid = 1;
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if (shootingEnergy > 0)
p-.printf(I"Shooter %~d on [%d,%dl, energy = %f\n",shootingPatch.id,

ixproc, iyproc, shootingEnergy);

/* Transmit the energy packet formed above from pro-:essor to processor
distributing its energy to all polygons on those processors as
determined by the form-factors.

for (r - 0; r<nxproc; r+)
{if(shootingPatchValid == 1)

{shootingPatchValid = 0;
for(i0;: i<oldPoly; i++)
{ tempPoly -old-.poly-.list + i

tempRad = (plural float) form-factors[iJ[shootingPatch.id]*
shootingPatch.area/ (255.0*255 .0*tempPoly->area);

for(n=0; n<3; n++)
{deltaRad = tempRad*(plural float) (tempPoly->colors [0][n] )*

shootingPatch.unshot En];
tempPoly->unshotRad[n] +- deltaRad;
tempPoly->totalRad[n) += deltaRad;

ss..xsend(0, 1,&shootingPatch, &shootingPatch, sizeof(Packet));
%netEC13 shoot ingP at chValid - 1;

/* Set the unshot radiosity of the shooting patch to zero
if (shooter >- 0)
{tempPoly - old.poly..list + shooter;
tempPoly->unshotRad ERED) =
tempPoly->unshotRad EGREJ) =

tempPoly->unshotRad [BLUE) -0.0;

/* Compute the total remaining energy in the system *
procRadSum - 0.0;
for(i - 0; i < oldPoly; i++)
{tempPoly - old.poly-.list + i;
for (n = 0; n <3; n++)
procRadSum += tempPoly->unshotRad[a];

totalUnshotRad = reduceAddf(procRadSum);

118



printf("Tota. unsbhotRad radiosity %(f\n",totalUnshotRad);
fflush(stdout);

dist-.pw

Carry out the distribution of energies from patch to walls within
each virtual room. This is done by checking out for each polygon
all the rays in the wall arrays which have originated from this
polygon and then incrementing their energy values by the energy
values of the polygon. This has not been tested.

dist.pw()
{plural int i,j;
mnt n;
plural Poly* plural tempPoly;

for(i = 0; i < oldPoly; i++)

{tempPoly = old-.polylist + i
if (tempPoly->unshotRad[RED] +

tempPoly->UnshotRad [GREEN] +

tempPoly->unshotRad[RED] > 0.0)
{for(n = 0; n < NtJMWALLS; n++)

{for(j - 0; j < wal.11-count[n]; j++)

{if (tempPoly->id -- wall-.rays[n][j].id)
{ wali-rays[n] [j] .energy[RED] +=

tempPoly->unshotRad [RED) *tempPoly->axrea/NUMRAYS;
wall-.rays [n][j] energy [GREEN] +=

tempPoly->unshotRad [GREEN] *tempPoly->area/NU4RAYS;
wall.rays[n] [j] .energy[BLUE] +-

tempPoly-)unshotRad [BLUE] *tempPoly->area/NUMRAYS;

xchg-.walls

This routine exchanges the energy filled walls from one room to the
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other room. This has not been tested.

xchg-.walls 0
{plural Ray* plural tempRay;

/* Xchg N wall ie move the wall North *
if (iyproc > XROOM.DIM)
{ss-.xsend(XROOM-.DIM, 0, &wail..rays[NORTHJ [0],&wall-.rays [NORTH] [0],
MAXRAYS*sizeof (Poly));
xnetN[XROOM-.DIM] .wajll-.count[NORTH] - wal...count [NORTH];

/* Xchg S wall*
if (iyproc < nyproc - X-ROOM-.DIM)

/* Send it XROOM-.DIM rows down *
{ss..xsend(-XROOM.DIM, 0, &waii..rays[SOUTH] [0], &wali-raysSOUTI][0]
MAXRAYS~sizeof (Poly));

xnetS EXROOM-LDIM . wall-count [SOUTH] = wallcount [SOUTH];

/* Xchg E wall*
if ((iyproc+).XROOM-.DIM > 0)

/* Send it 1 down */
{ss...send(l, 0,&vail..rays[CEAST] [0),kwall..rays[EAST] [0],MAXRAYS*sizeof(Poly))
xnetS [1) .waik-count [EAST) - wall-.count [EAST];

/* Xchg W wall *
if (iyproc % XLROOM-.DIM > 0)
/* Send it 1 up */
{ss-.xsend(-1,0,&waJ...rays[WEST] [0) ,kvallrays [WEST] [0],M.AXRAYS*sizeo-f(Poly))
xnetN[1] .wal...count [WEST] -wallcount [WEST];
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ff.m for Object-Space Ray-Casting Approach

Amitabh Varshney Howard Good

FF. M

Approach: Object-Space Ray-Casting

This part of the code is responsible for doing much of one time
processing required to get the radiosity iterations going. This
involves setting up of the virtual walls and calculating the form
factors.

#include <mpl.h>
#include <math.h>

#include "host .h"

extern float MinX, MinY, MinZ; /* Dataset extents */
extern float MaxX, MaxY, MaxZ;
extern plural int oldPoly; /* Polygon buffer */
extern plural Poly *old.poly-list; /* List of patches to be used*/
extern int maxPEpoly; /* Max no of polygons perPE */
extern float xroomBoundXROOM.DIM]; /* Room bounds in X, Y and Z */
extern float yroomBound[YOOMDIM];
extern float zroomBound[ZROOM.DIM];

/* Form factor array at each processor*/
plural byte form.factors[MAXPEPOLYS] [MAXROWPOLYS];
/*Rays hitting walls at each processor*/

plural Ray wall-rays [NUMWALLS] [MAXPEPOLYS*NUMRAYS];
/* No of rays stored for each wall */
plural int wall.count[NUMWALLS];

i /**********************************************************************

calculate-form-factors

This function calculates the form-factor matrices of the
polygons and stores these at each processor. It also computes the
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rays which hit the virtual room walls and stores these in ray

arrays which are then later used for energy distribution in

radiosity iterations

calculate-form-f actors ()
{

int n; /* Misc counter */
plural Poly* plural tempPoly; /* Polygon poinzer */

plural Ray testRay; /* Ray buffer */
plural float normal[3]; /* Normal to the polygon */
plural int patch-id; /* Id of the patch */
plural byte wall-id; /* Id of the wall - N,S,E,W,F,C */
plural int i,j,k,r; /* Misc counters */

plural float ff;
plural int is,it;
plural float s,t;
plural int ffcount;

/* Initialize the form iactor matrices at each processor */

for (i=0; i < MAY%-" LYS; i++)
{ for(j-O; j<MO'C[,vPOLYS; j++)

form-facto:4 Li) j] = (plural byte) 0.0;
}

/* Set up the walls */
ini.t-walls(;

/* Intialize the wall - ray arrays */
ffcount = 0;

for (i - 0; i < NUMWALLS; i++)
wall_count [i] - 0;

/* Assign the patch id's *1
patchid = 0;
for (n - 0; n < nxproc; n++)

{ if (ixproc a- n)
{ for (i - 0; i < oldPoly; i++)
{ tempPoly = old-poly-list + i;

tempPoly->id = patch.id++;
}
xnetE[1].patch-id = patch_id;
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for (i = 0; i < oldPoly; i++)
{tempPoly =old-poly-list + i

normal [X] tempPoly->eq[AJ ;
normal CY] = tempPoly->eqCB] ;
normal CZ] = tempPoly->eqC];

all testRay.id - -1; /* to indicate invalid rays *

for (r = 0; r < NUMRAYS; r++)
{testRay.originCX] testRay-originCY] = testRay.origin[Z] 0.0;
testRay.distance -HUGEF;
testRay.id a tempPoly->id;

1* set ray origin to patch center *
for (j = 0; j < tempPoly->numverts; j++)

{testRay.origin CX] += tempPoly->verts~jj [X];
testRay.originCY] +- tempPoly->verts~jJ CY];
testRay.origin[Z] += tempPoly->verts~jJ CZJ;

testRay origin CX] / tempPoly->numverts;
testftay .origin CY] I-tempPoly->numverts;
testRay origin CZ] tempPoly->numverts;

/* set ray direction */
testRay.direction[X] normaI;
testRay. directionCEYI - normalCY];
testRay.directionCZ] - normal CZ];

for (k = 0; k < nxproc; k++)

/* intersect ray with all polygons and virtual walls *
all if (testRay.id >- 0) intersect-.ray(ktestRay);

ss-.xsend(0,1,testRay,ktestRay,sizeof(Ray));

I

if (testRay.id >- nxproc*maxPEpoly + N~UMWALLS)
p..pr-Lntf ("bad Ad = '/d\n',testRay.id);

else if (testRay.id >= nxproc*maxPEpoly) /* Intersection is with a wa!.I*/

123



{wall-id = testRay.id - nxproc*maxPEpoly;

/* Store the ray into the buffer for appropriate wall *

if (wall-.id < NTIMWALLS)
{j = wallcount Cwall-id];
wall-rays~waJllid]Ej] .id = tempPoly->id;
wall-rays Lwall-idJ Eji distance - testRay .distance;

for (k = 0; kc<3; kc++)

{wall-rays~wall-id] Ej].origin~k] = testRay.origin[k];

wall-.rays all-id] Ej].energy Uk] - 0.0;

wall-.rays~wall-.id] Cj].directionCkI - testRay-directionBC];

wall..count Uwall..id] +i;

p..printf ("shooter %d hit wall %d\n" ,tempPoly->id,wall..id);
I
else /* Intersection is with a model poly*/

if (testRay.id >= 0 kk testRay.distance < HUGEF)

{ff-count+4;
f orm-f actors Ci] CtestRay. id] ++;

p..printf(I"shooter %d hit poly %d\n",tempPoly-id,testRay.id);

I

it (testRay.distance >- HTJGEF)

{ p..printf("i%,y = %d,%d; origin = %g,'/g,%g; direction -= %,%~"

ixproc,iyproc,testRay.origin[XL, testRay.origin[Y], testRay.originCZ],

testRay .directio LX], testRay .direction[Y), testRay direction LZ]);

if (oldPoly*NUMRAYS > 255)
{p-.printf("proc %d %d: too many rays\n"l,ixproc,iyproc,oldPoly*NU4RAYS);

exit(-1);

/* scale form factors *

if (oldPoly > 0)
{for (i - 0; i < oldPoly; i++)

{for(j=0; j<MAXROWPOLYS; j++)
f ff =(plural float) fo-mfactors[i][j];

ff /NtIIRAYS;
ff *u255.0;
form-.f actors Li] Lj] -(plural byte) ff;
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}
}

}

/* Verify that the rays are conserved */
for (i = 0; i < NUMWALLS; i++)

ff-count += wall-count [i] ;

if (ff-count != oldPoly*NUMRAYS)
pprintf("proc %d %d: bad ray count = %d oldPoly = %d;\n",ixproc,iyproc,
ffcount,oldPoly);

}

intersect-ray

This function would intersect the given ray with all the
polygons present on the row to which it belongs and returns the id
of the polygon it finds has the closest intersection point in the
id field of the ray

intersect-ray (testRay)
plural Ray *testRay; /* Input ray *1
{

plural Poly* plural tempPoly; /* Polygon buffer */
plural int i,j,k,l; /* Misc counters */
plural float normal[3]; /* Normal */
plural float ndotd; /*Dot prod of normal and ray direction*/
plural float p[3]; /*Temporaries */
plural float d,t;
plural byte 10,11,12;
plural byte inter;
plural float alpha,beta;
plural float uO,ul,u2;
plural float vO,vl,v2;

for (j - 0; j < oldPoly+NUMWALLS; j++)
{ tempPoly = old.poly-list + j;

if (tempPoly->numverts != 4 && tempPoly->numverts 3)
{ pprintf("ff bad numverts = %d\n",tempPoly->numverts),

exit (-1);

}
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normal X] =tempPoly->eq[A];
normal CY] = tempPoJly->eqCB] ;
normalCZ] = tempPoly->eqEC,];
d = tempPoly->eqCD];

1* Compute the dot product of the ray direction with the poly normal *

ndotd - normalCX]*testRay->direction[X] +

normalCY] *testRay->direct ion CY] +

normal CZ *testRay->direct ion [Z];

if (ndotd == 0.0) continue;

t = -(d + normal[X]*testRay->origin[X1 + normal[Y]*testRay->origin[Y1
normal [Z]*testRay->origin CZ ) /ndotd;

if (t <= 0.002) continue;
/* Avoid intersecting with originating polygon*/
/* Polygon is beyond closest intersection found so far*/

if (t >= testRay->distance) continue;

/* Calculate the point of intersection *
pEX] = testRay->origin[XJ + testRay->directionCX]*t;
p[Y] - testRay->origin[YJ + testRay-)direction[Y]*t;
p CZ] - testRay->origin CZ] + testRay->direction CZ)*t;

/* Find the orientation of the polygon *
-normalCX] = fp-.fabs(normalCX]);
normalCY] = fp-fabs(normal[Y]);
normal CZ] = fp-.f abs (normal CZ]);

if (normal CX] >= normal[Y] Uk normal CX] >= normal CZ])
{11 Y;
12 Z;

if (normal CY] >- normal EX] && normal CY] >= normal CZ])
{11 =;

12 Z;

if (normal CZ] >= normal CX] k& normal CZ] >= normal CY])
{11 X;

12 Y;

/* Verify if the point of intersection is within the polygon *
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uO = pCll] - tempPoly->verts[0] [l1];
vO = p[12J - tempPoly->verts[0] [123;

inter = 0;

1 =2;

do{
ul = tempPoly->verts[l-1] [1i] - tempPoly->verts[0] [11];

v1 - tempPoly->verts[1-1J [12] - tempPoly->vertsC[0] 12];
u2 = tempPoly->verts[J. ]Eli] - tempPoly->verts[0] [11];
v2 = tempPoly->vertsl ]1J[12] - tempPoly->verts [0][12];

if (ul =~0)

{beta =uO/u2;

if (beta >= 0.0 && beta <= 1.0)
{alpha a (vO - beta*v2)/vl;
inter - (alpha >- 0.0 && alpha+beta <= 1.0);

else
{beta = (vO*ul - uO*vl)/(v2*ul - u2*vl);
if (beta >= 0.0 && beta <= 1.0)
{ alpha = (uO - beta*u2)/ul;

inter =(alpha >= 0.-0 && alpha+beta <= 1. 0);

I while ('inter &k ++l < tempPoly->nunverts)

if (inter)
{testRay->distance = t
if (Q < oldPoly)
testRay->id = tempPoly->id;/* intersection was with a model polygon ~

else /* intersection was with a virtual wall *

testRay->id = nxproc*maxPEpoly + (j-oldPoly);

init..walls

Sets up the virtual wall polygons at all the processors

init..yallsoC

127



plural Poly* plural tempPoly;'
plural, byte xroom,yroom,

iroom = iyproc/YROOM-DIM;
yroom = iyproc.YROOM-.DIM;

/* North wall */
tempPoly = old-.poly-list + oldPoly + NORTH;
tempPoly->verts[O) CX) = MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->verts[l] CX) = MiuX + xroomBoundCxroom);
tempPoly->vertsC2) CX) - MinX + xroomBound~xroom];
tempPoly->verts[3] CX] = MinX + (xroom > 0 ? xroomBound~xroom-1J 0);
tempPoly->verts[O] CY] = MinY + yroomBound~yroom];
tempPoly->vertsC13[Y1 - MinY + yroomBound~yroom];
tempPoly->verts C2] Y] = MinY + yroomBound Cyroom);
tempPoly->verts [3) CY] = MinY + yrooznBound Cyroom];
temp~oly->verts[O]CZJ - MinZ;
tempPoly->verts[l]CZ] MinZ;
tempPoly->verts[2][ZJ = MaxZ;
tempPoly->vertsC3JCZ] MaxZ;
tempPoly->eq[Al = 0.0;
tempPoly->eqCB) - -1.0;
tempPoly->eqC - 0.0;
tempPoly-eqD] - MinY + yroomBound~yroom];
tempPoly-)numverts - 4;
tempPoly->area =0.0;

/* South wall *
tempPoly - ol&.polylist + oldPoly + SOUTH;
tempPoly->verts[O] CX] - MinX + xroomBound~xroom);
tempPoly->verts~l] CX] = MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->vez-tsC2) CX] - MinX + (xroom > 0 ? xroomBouxid~xroom-1J 0);
tempPoly->verts [3] CX] - MinX + xroomBoiind~xroom];
tempPoly->ver-ts [0] CY) a MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->vertsClCY] - MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->vertsC2)[Y] - MinY + (yroom > 0 ? yroomBound[yroom-1] 0);
tempPoly->verts [3] CY] = MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->verts[O)CZ) - MinLZ;
tempPoly->vertslCZ] -MinZ;
tempPoly->verts [2) CZ] = MaxzZ;
tempPoly->vertsC3CZ) = MaxZ;
tempPoly->eqCA] 0.0;
tempPoly->eq[B] 1.0;
tempPoly->eqC = 0.0;
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tempPoly->eq[D] =-(MinY + (yroom > 0 ? yroomBound[yroom-1.: 0));
tempPoly->numverts -4;
tempPoly->area = 0.0;

/* West wall */
tempPoly = old-poly-list + oldPoly + WEST;
tempPoly->verts[E X] = MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->vertsCi] CX] = MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->vertsC2] CX] = MinX + (xroom > 0 ? xroomBound~xroom-iJ 0);
tempPoJly->verts[3J CX] = MinX + (xroom > 0 ? xroomBound~xroom-i] 0);
tempPoly->verts[O]CY] = MinY + (yroom > 0 ? yroomBound~yroom-i] 0);
tempPoly->vertsCICY] = MinY + yroomBound~yroom];
tempPoly->vertsC2]CYJ - MinY + yroomBound~yroom];
tempPoly->vertsC3J[Y] = MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->verts[O][ZJ = MinZ;
tempPoly->vertsCl]CZ] = MinZ;
tempPoly-.vez-tsC2] CZ] - MaxZ;
tempPoly->v'ertsC3]EZ] = MaxZ;
tempPoly->eq[A] - 1.0;
tempPoly->eqCB] -0.0;
tempPoly->eq[C] -0.0;
tempPoly->eq CD] - -(MinX + (xroom > 0 ? xroomBound~xroom-i] 0));
tempPoly->numverts - 4;
tempPoly->area - 0.0;

/* East wall */
tempPoly - old..polylist + oldPoly + EAST;
tempPoly->verts CO]CXI MinX + xroomBoundCxroom];
tempPoly->verts Ci] X] - MinX + iroomBound Cxroom];
tempPoly->v'erts C2] CX] - MinX + xroomBound Ciroom];
tempPoly->vertsC3] CX]a MinX + xroomBound~xroom];
tempPoly->verts[O)CY] - MinY + yroomBound~yroom];
tempPoly->verts~l]CY] - MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->vertsC2]CY] - MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->ver'tsC3]CYJ - MinY + yroomBound~yroom];
tempPoly->verts[O]CZ) - MinZ;
tempPoly-).verts[1]CZ] a MinZ;
tempPoly->vertsC2]CZ] - MaxZ;
tempPoly->vertsC3J CZ] a MaxZ;
tempPoly->eq[A] -1.0;
tempPoly->eqCB] - 0.0;
tempPoly->eqCC] a 0.0;
tempPoly->eqCD] = MinX + xroomBound~xroom];
tempPoly->numverts =4;
tempPoly->area = 0.0;
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/* Fioor *
tempPoly =old-poly-list + oldPoly + FLOOR;
tempPoly->vertsCOJEX] MinX + (xroom > 0 ? xroomBound~xroom-11 0);
tempPoly->verts[1][X] MinX + xroomBound~Croom];
tempPoly->vertsE2]EX] MinX + xroomBound~xroom];
tempPoly->vertsC3j[X) MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->vertsCOj£Y] = MinY + (yroom > 0 ? yroomBoundCyroom-1] 0);
tempPoly->verts~iJEY] - MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->verts:21C1 - MinY + yroomBound~yroomj;
tempPoly->vertsC3]EY1 - MinY + yroomBound~yroom3;
tempPoly->vertsCOllZ] = MinZ;
tempPoly->vertsC1JCZ1 - MinZ;
tempPoly->vertsC2]CZ) - MinZ;
tempPoly->verts:33[Z) - MinZ;
tempPoly->eqCA] = 0.0;
tempPoly->eq[B] = 0.0;
tempPoly->eq£C] = 1.0;
temp~oly->eqCD] =-MinZ;
tempPoly->numverts - 4;
tempPoly->area = 0.0;

/* Ceiling */
tempPoly - old-.poly-.list + oldPoly +CEILING;
tempPoly->ver-ts£0] EX] MinX + xroomBound[xroom];
tempPoly->verts £1) X] - MinX + (xroom > 0 ? xroomBound[xroom-1] 0);
tempPoly->vez-ts£2) CX] - MinX + (xroom > 0 ? xroomBound~xroom-1] 0);
tempPoly->ver-ts £3] X] - MinX + xroomBound~xroom];
tempPoly->ve-tsO]EY] - MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->verts~l][Y] -MinY + (yroom > 0 ? yroomBound~yroom-1] 0);
tempPoly->ver-ts 2] CY] =MinY + yroomBound Cyroom];
tempPoly->verts £3][ -Y MinY + yroomBound Cyroom];
tempPoly->verts[0CZj MaxZ;
tempPoly->ver-ts[1]£Z] - MaxzZ;
tempPoly->verts £2][ -Z MaxZ;
tempPoly->vertsC3]£Z] - MaxzZ;
tempPoly->eq[A] = 0.0;
tempPoly->eq£B] 0.0;
tempPoly->eq[C] = -1.0;
tempPoly->eq[D] = MaxZ;
tempPoly->numverts -4;
tempPoly->area = 0.0;
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io.m for Object-Space Ray-Casting Approach

/************************************************************************
Amitabh Varshney Howard Good

IO.M

Approach: Object-Space Ray-Casting

This program runs on the back-end of MasPar and carries out most
of the tasks including swapping in of the polygons from the from-end

#include <mpl.h>
#include <stdio.h>

#include <math.h>
#include "host.h"

visible extern dieo;

GLOBAL DECLS

float MinX, MinY, MinZ; /* Extents of the input dataset*/
float MaxX, MaxY, MaxZ;
plural Poly *old.poly-list; /* Lists of polygons */
plural Poly *new-poly-list;
plural int oldPoly; /* Number of polygons in oldpoly-list*/

plural int newPolyCount; /* Number of polygons in new.poly-list*/
int maxPEpoly; /* Maximum no of polygons/PE */

float xroomBound[XROOMDIM]; /* Upper bounds of each virtual room */
float yroomBound[YROOMDIM];

float zroomBound[ZROOMDIM];

/**********************************************************************
polys.to-pe

This is equivalent of the main program on the back end. It blocks

in the polygon dataset and distributes it on the PE's. Then it
calls the appropriate routines to balance the polygons and start
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radiosity iterations.

visible polys-.to-.pe(poly..list, total-polys)

Poly *poly-list; /* List of polygons on the front-end*/

int total-polys; /* Total no of polys to be swapped-in*/

{ mt numpoly,maxpoly,minpoly;
int n;
mnt initPEpoly; /* initial no of polygons per PE *

initPEpoly a(int)(total-.polys/nproc + 1);
maxPEpoly =initPEpoly*6;

fprintf(stdout,"polys %d nproc %d polys/pe %d4 poly-.size Zd\n", total-polys,
nproc, initPEpoly, sizeof (Poly));

fflush(stdout);

oldPoly -0;

/* Allocate PE memory *
P..ALLOCN(ol-poly..list, Poly, maxPEpoly + NUMWALLS, t"polys-.to..pe");
P...ALLCN(ne-poly.list, Poly, maxPEpoly + NUNWALLS, "polys-.to-.pel");

1* Read in polygons to PEs from the front end side *
n = blockln(poly-.list., old..poly..list,

0, 0, axproc, nyproc, (initPEpoly-1) *sizeof (Poly));
n +- blockln(poly-.list+(initPEpoly-l)*nproc, old-.polylist+initPEpoly-1,

0, 0, nxproc, nyproc, sizeof(Poly));
printf("Num bytes Xferred - %d; num polys - %d\n,n,n/sizeof(Poly));

1* Determine oldPoly for each PE *
oldPoly -

(iproc < total-polys-(initPEpoly-l)*nproc ? initPEpoly :initPEpoly-1);

numpoly - reduceAdd32(oldPoly);
maxpoly - reduceMax32(oldPoly);
minpoly - reduceMin32(oldPoly);
printf("old polys -74; max -%d, min = %d\n",numpoly,maxpoly,minpoly);

/* determine the extents of the dataset - used in balancing *

determine...extentso;

/* Coarsely balance the dataset *
balanceo;
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1* Refine the balance on the DPU by further subdividing if necessary*/
refine..balanceo;

/* Perform the one-time calculations for the form-factor determination~s-/
calculate-f orm.f actors();

1* Start the radiosity iterations *
/* Carry out the patch - patch energy exchange*/
dist-ppo;

/* Carry out the exchange of energy laden virtual walls *
xchg-.wallsQ;

determine-extents

This routine determines the extents of the polygon dataset.
It takes into account the coarse cell lengths toi determine the
extents which will be represented on the DPU array once the
balancing is done.

determine.extents C
{plural mnt i, j; /* Miscellaneous counters *
plural float x, y, z; /* Vertex values */
plural Poly* plural tempPoly; /* Current polygon *
plural float minx, miny, minz; /* Local extents on each PE *
plural float maxx, maxy, maxz;

/* Determine the local extents *
minx -miny - minz = HUGEF;
maxx - maxy - mazz to -HUGEF;
for (i - 0; i<oldPoly; i++)
{tempPoly - old-.polylist + i

if (tempPoly->numverts < 3 11 tempPoly->numverts > MAXVERT){
p-.printf("ERROR: proc %d numverts - %d\n',iproc,tempPoly->numverts);
exit( 1);

for (j = 0; j<tempPoly->numverts; j++)
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{ w tempPoly->verts [j] CX]
y = tempPoly->verts j[ily]
z -tempPoly->verts j]CZ.
minx = MIN(minx,x);

miny = MIN(miny,y);
minz =MIN(minz,z);
maxi = MAX(maxz,x);
maxy - MAX(maxy,y);
maz = MAX(mazz,z);

/* Determine the global extents *

MinX = reduceMinf(minx);
MinY -reduceMinf(miny);
Min.Z - reduceMinf(minz);
MaxX - reduceMaif (maxx);
MaxY = reduceMaxf (maxy);
MaxZ - reduceMaxf (maxz);

printf ("Minx %6.2f MazX %6.2f MinY %.6.2f MaxY %6.2f MinZ %6.2f MaXZ %6.24,\nti,
MinX,MaxX,MinY,MaxY,MinZ,MaxZ);

1* Take into account the global patchification grid aligned along the axes*/

MinX - f-floor(MinX/XCELLLENGTH) * XCELLLENGTH;
MinY - f...floor(MinY/YCELLLENGTH) * YCELLLENGTH;
MinZ = f-floor(MinZ/ZCELLLENGTH) * ZCELLLENGTH;
MaxX = f-.ceil(MaxX/XCELLLENGTH) * XCELLLENGTI{;
MaxY - f-ceil(MaY/YCELLLENGTH) * YCELLLENGTH;

MaxZ = f..ceil(MaxZ/ZCELLLENGTH) * ZCELLLENGTH;

priatf('Minx %.6.2f MaxX %6.2f MinY %6.2f Mazy %.6.2f MinZ %.6.2f MaxZ %/6.2f\n,
MinX,MaxX,MinY,MaxY,MinxZ,MaxZ);

area

This routine determines the area of a plural polygon defined by
the vertex array 'vert' and having 'numver-Ls' number of vertices
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For this the routine considers the polygon to be composed of

triangles and then computes the area of each triangle by taking
half of the magnitude of the cross product of two of its sides.

plural float area(verts, numverts)

plural float verts[MAXVERT] [3]; /* Vertex array */
plural int numverts; /* Number of vertices */
{ plural int i,j,k;
plural float area - 0.0;

plural float vl[3], v2[3], v313];

for(i=O; i < numverts - 2; i++)
{ 3 -i

k - i+2;

vI[X] = vertsCj ICX) - vertsCi) CX];
vl[Y] = verts[j][Y] - verts[i][Y];

vI[Z] = vertsCj] [Z] - vertsCi] [Z);

v2[X] = verts[k] [X] - verts[i] [X];

v2[Y] = verts[k] [Y] - verts[i] [Y];
v2[Z] - vertsCk] [Z] - verts[i] [Z];

v3CX] - vl[Y]*v2CZ] - v[Z]*v2[Y];
v3[Y] - -vl[X]*v2[Z] + vl[Z]*v2 [X];
v3[Z) - vl[X)*v2[Y] - vl[Y)*v2[X];

area += 0.5*fp.sqrt(v3CX]*v3CX] + v3CY]Iv3CY] + v3[Z,*,v3[Z] );
}

return area;

balance

This routine evaluates the orthogonal subdivisions which would

permit an approximate load balancing and then routes the polgyons

their destination processors based on above subdivisions of model

into rooms and mapping of these rooms on the DPU array.

balance()
{ plural int i, j, k, m; /* Misc counters */
plural Poly* plural tempPoly; /* Polygon pointers */
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plural Poly* plural newPoly;
plural int* plural oldPolyBuf;
plural int* plural newPolyBuf;
plural int newPolyTotal; 1* Optimal no of polys per PE *
plural int newPEpoly; /* Near optimal no of polys/PE*/
plural int roomCountCXROOM.DIMJ [YROOM-.DIMJ EZROOM.DIMJ;
plural Vec3 patchCenter; 1* Center of a polygon *1
plural byte xpatchRoom[XCELLSJ; /* Describe location of cell*/
plural byte ypatchRoom[YCELLSJ; 1* in the grid of virtujal*/
plural byte zpatchRoomEZCELLS]; rooms.
plural mnt xpatchCountEXCELLS]; /* No of polys in each cell *
plural mnt ypatchCount rYCELLS];
plural mnt zpatchCount EZCELLS];
plural byte curr-xproc; /* Temporaries *
plural byte curr-.yproc;
plural byte xpatch,ypatch,zpatch; /* Physical cell coords *
plural byte xroom, yroom, zroom; 1* Virtual room -rid coords*/
plurzJ.1 byte room-.row;
mnt roomsum[XROOM.DIMJ [YROOM-.DIMJ [ZROOM-.DIMJ;
int room-.sum; /* No of patches in room *
byte curr..xoom; /* Current room *1
mnt polycount; /* Actual no of polygons *
mnt polyquota; /* Polys to be assigned to PE*/
mnt xpatchSumXCELLS) ,ypatchSumYCE:LLSJ ,zpatchSumCZCELLS];
mnt numpoly ,maxpoly ,minpoly;
mnt n,r,q; /* Misc singular counters *
mnt minRoomCount; /*Min polygons in a room*/
mnt maxRoomCoxnt; /*Max polygons in a room*/

/* Initialize the variables */

for(n - 0; n < XROOM-.DIM; n++)
for(r - 0; r < YROOM-.DIM; r++)

for(q - 0; q < ZRQOM..DIM; q++)
roomCount [n] [r] Eq) - 0;

for(n - 0; n < XCELLS; n++)
xpatchCount En] - xpatchSum En] - 0;

for(n - 0; n < YCELLS; n++)
ypatchCount~n] - ypatchSum~n] = 0;

for(n = 0; n < ZCELLS; n++)
zpatchCount [n] = zpatchSum En] = 0;

/* Find the number of polygons per cell *
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for(i=0; i<oldPoly; i++)
{tempPoly = old-polyjlist + i

patchCenterEXJ = patchCenterEY] = patchCenterCZ] 0.0;
for(j = 0; j<teinpPoly->numverts; j++)
{patchCenterEXJ += tempPoly->vertsj CX];
patchCenterEY] += tempPoly->vertsj CY];
patchCenterEZJ += tempPoly->verts[jJ CZJ;

}ac~ne[1 tmpoy>uvrs
patchCenter CX] 1=tempPoly-umverts;
patchCenterEY] 1=tempPoly->numverts;
pat ch -nt(pluralbte) paly-)ners; in)XELLNT)
ypatch - (plural byte) ((patchCenter CX] - MinX) /XCELLLENGTH);
ypatch -(plural byte) ((patchCenter[Y] - MinY)/YCELLLF.NGTH);

if (xpatch >= XCELLS 11I ypatch >= YCELLS 11I zpatch >= WCELTS){

p..printf ("bad patch: 7d,%d,%d\n",xpatch,ypatch,zpatch);
exit(-I);

I

XpatchCount Cxpatch] ++.;

ypatchCount Cypatchl +4.;

zpatcliCount Czpatch] +4.;

/* Veri.fy that total number of polygons distributed along the x, y and z
cells is equal *

numpoly =0;
for(n -0; n < XCELLS; n++)
{xpatchSum~n] = reduceAdd32(xpatchCount~n]);

numpoly +- xpatchSum En]

printf ("numpoly = %d\n" ,numpoly);

numpoly = 0;
for(n - 0; n < YCELLS; n++)
{ypatchSum En] - reduceAdd32(ypatchCount En]);

numpoly +- ypatchSum~a];

printf("nunpoly - /.d\n",nuznpoly);

numpoly -0;
for(n = 0; n < ZCELLS; n++)

{zpatchSum En] = reduceAdd32 (zpatchCount En]);
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numpoly += zpatchSum~nJ;

printf("lnumpoly = Yd\n",numpoly);

1* Distribute the polygons so that they are approximately equal along the
X - axis divisions.

room-.sum =0;

currroom =0;
polycoiint =numpoly;
for(n = 0; n < XCELLS; n++)
(polyquota = polycount/(XROOM.DIM-curr~room);

if Q.ABS~room~suam-polyquota) > .ABS(room-.sum+xpatchSum[nJ -polyquota)){
xpatchRoom[n] = curr-.room;

I
else{

xroomBoiind Ecurr-.roomj = n*XCELLLENGTH;
printf("x curr-.room - %d; bound = %g\n",curr~room,xroomBound[curr-room7);

if (curr-.room < XROOM-.DIM-1)
curr-room++;

xpatchRoomrn] = curr..room;
polycount - room-..sum;
room-.sum = 0;

room-.sum +- xpatchSun]n;

if (curr-.room >= XROO?(.DIM){
printf ("bad curr..room w '%d\n"1,curr.xoom);

xroomBound [curr-room] - n*XCELLLENGTH;
printf("x curr-room - %d; bound - 7.g\n",curr.room,xroomBoundrcurr.room]);

/* Distribute the polygons so that they are approximately equal along the
Y - axis divisions.

room-.sumi 0;
curr-room =0;

polycount =numpoly;
for(n = 0; n < YCELLS; n++)
{polyquota = polycount/(YROOM-.DIM-curr-room);
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if (-.ABS(room~sum-polyquota) > .ABS(room-sum+ypatchSun[n] -polyquo- a)){
ypatchRoom~n] = curr-.room;

I.
else{

yroomiBound [curr-room] = n*YCELLLENGTH;
printf(tiy curr..room = %d; bound = Zg\n",curr-room,yroomB'2,nd~curr~roornP;

if (curr-room < YROOM-DIM-1)
curr..room++;

ypatchRoom[aJ = curr-room;
polycount -~room-sum;

roomsum =0

room-sum += ypatchSum~n];-

if (curr-room >= YROM.DIM){

printf("bad ycurr-room = %d\n",curr..room);
exit (-1);

yroomBound Ccurr-.room] - n*YCELLLENGTH;
printf("y curr-room - %d; bound - 7g\n",curr-room,yroomBound[curr-room]);

/* Distribute the polygons so that they are approximately equal along the

Z - axis divisions.

room-sum - 0;
curroom - 0;
polycount = numpoly;

for(n = 0; n < ZCELLS; n++)
{polyquota - polycount/(ZROOM-DI-curr-room);

if Q-ABS(room~sum-polyquota) > -.ABS(room~sum+zpatchSum~n] -polyquota)){

zpatchRoomrn] -curr-.room;

I.
else{

zroomBound Ccurr-roomj = n*ZCELLLENGTH;
printf("z curr..room - %d; bound = %g\n"l,currroom,zroomBound[curr.room]);

if (curr.room < ZROOMDIM-1)
curr-.room++;

zpatchRoom[n] = curr-room;
polycount - room-sum;
roomsum = 0;
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room-.sumi += zpatchSum~rn];

if(curr-.room >= ZROOM-DIM){
printf("bad curr-room = %d\n",curr-room);
exit(-1);

zz-oomBound [curr-room) n*ZCELLLENGTH;
printf(I"z curr..room - %d; bound = %g\n",curr..room,zroomBound~curr~room]);

1* Find the number of polygons wiithin each room
for(i=0; i<oldPoly; i++)
{tempPoly = old-.polylist + i

patchCenter[X] - patchCenterCY] = patchCenterEZJ 0.0;
for(j = 0; j<tempPoly->numverts; j++)
{patchCenter[X] += tempPoly->verts~j] EX];
patchCenterCY] += tempPoly->verts~j] EY3;
patchCenter[Zj 4= tempPoly->verts[jJ CZJ;

patchCenter EX] tempPoly->zuumverts;
patchCenter EY] /tempPoly->numver-ts;
patchCenter EZ] I-tempPoly->numver-ts;
xpatch = (plural byte) ((patchcenterXJ - MinX)/XCELLLENGTH);
ypatch - (plural byte) ((patchCenter[Y] - MinY)/YCELLLENGTI{);
zpatch - (plural byte) ((patchCenter[ZJ - MinZ)/ZCELLLENGTH);

if (xpatch >- XCELLS 11I ypatch >- YCELLS 11 zpatch >= ZCELLS){
p..printf ("bad patch: %d,Yd,%d\n",xpatch,ypatch,zpatch);
exit (-1);

if (xpatchRoom~xpatchj >- XROOM..DIM 1 I
ypatchRoomCypatch] >- YROOM-DIM 11
zpatchRoom~zpatch] >- ZROOZ4..DIM) {
p-printf (mad patch room: %,d%~"

xpat chRoom Expat ch) ,ypat chRoom Eypat ch , zpatchRoom [zpat ch]);
exit (-1);

roomCount [xpatchRoom Expatch]] EypatchRoomypatch]] EzpatchRoom [zpatch]] ++;

/* Print out the minimum and maximum number of polygons per room *
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minRoomCount = 10000;
maxRoomCount = -HUGE;
numpoly = 0;
for(n = 0; n < XROOM-.DIM; n++){
for(r = 0; r < YROOM..DIM; r++){

for(q = 0; q < ZROOM-DIM; q++){
roomsumin3n]r] Eq3 = reduceAdd32(roomCount En]Er] Eq]);
minRocmCount = MIN(minRoomCount, roomsum En]Er] Eqi);
maxRoomCount = MAX (maxRoomCount, roomsum En]Er] [q]);
numpoly += roomsum[nJ Er] Eq];
printf(room %d//.d,%d count = %d\n",n,r,q,roomsum~nJ Er]Eq]);

printf("numpoly = Yd minRoomCount = %d maxRoomCount = %~"
numpoly,minRoomCount ,maxRoomCount);
fflush(stdout);

/* Transfer the polgyons to the appropriate PE taking into account the way
rooms are mapped onto the MasPar grid.

all newPolyCount = 0;

for(i=0; i<oldPoly; i++)
{tempPoly = old-.polylist + i

/* Find the virtual room to which this polygon belongs *
patchCenterEX] - patchCenterEY] - patchCenterEZ] 0.0;
for(j = 0; j<tempPoly->numverts; j++)

{patchCenter[X] += tempPoly->verts~j] EX];
patchCenter[Y] += tempPoly->verts~j] EY];
patchCenter[Z] += tempPoly->verts~j] EZ];

}ac~ne[1 tmpoy>uvrs
patchCenterEX] I-tempPoly->numverts;
patchCenter EY] 1=tempPoly->numverts;
xpth-(lrlbt)(patchCenter[X -Z I- tempXoly->numvert
xpatch - (plural byte) ((patchCenter[X] - MinX)/XCELLLENGTH);
ypatch = (plural byte) ((patchCenter[Y] - MinY)/YCELLLENGTH);

if (xpatch >= XCELLS 11I ypatch >= YCELLS 11I zpatch >= ZCELLS){
p-printf (Ibad patch: %d,%d,%d\n",xpatch,ypatch,zpatch);
exit (-1);
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xroom = xpatch?~oom[xpatchJ;
yroom = ypatchRoom[ypatch];
zroom = zpatchRoom~zpatch];

if (xroom >= XROOM.DIM 11I yroom >= YROOM-DIM I)zroom >= ZROOM-.DIM){
p-printf ("bad patch room: /d,%d,%d\n", xroom,yroom,zroom);
exit (-1);

1* Find the processors to which this room is assigned and get the processor
to which to send the current polygon

room-row = xroom*YROOM-.DIM + yroom;

if (room-row > nxproc) {
p-.printf("bad room-.row %d\n",room.row);
exit(-1);

I

cur-.yproc - room-..row;
curr..xproc - ixproc;

if (curr.yproc < 0 11I curr-.yproc >- nyproc){
p-.printf("lbad yproc: %d\n"1,curr..yproc);
exit(-1);

all m a0;

1* Transfer the polygon to the destination processor using router *
while ((plural) 1) {

if (connected(curr-.yproc*nxproc + curr-xproc)){

all
( newPoly - new...polylist + newPolyCount;

newPolyBuf - (plural int* plural)newPoly;

oldPolyBuf =(plural int* plural)tempPoly;

m =router £curr-yproc*nxproc + curr-.xprocj .newPolyCount;
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all if (m >- maxPEpoly){
p..printf("bad m = dn,)

newPEpoly =roomsum Exroom] Eyroom] Ezroomj /nxproc+1;

newPolyTotal =

(curr.xproc < roomsum~xroom] Lyroom] Ezroom-(newPEpoly-1)*nxproc C

newPEpoly :newPEpoly-1);

if (m > neuPolyTotal){

curr-xproc++;
curr-.xproc %= nxproc;
continue;

else{
for (n =0; n < sizeof(Poly)/sizeof(int); n++)

router Ccurr-proc*nxproc+curr.xproc] .newPolyBuf En] oldPolyBuf Ej;

router~curr..yproc*nxproc + curr-.xprocJ .newPolyCount m;

break;

/* Print the number of minimum and maximum number of polygons to a processo
after the above routing anud grouping of polygons to rooms.

all

{numpoly - reduceAdd32(newPolyCount);
maxpoly - reduceMax32(nevPolyCount);

minpoly = reduceMin32(newPolyCount);
printf('new polys - %d; max = %d, min - %d\n",numpoly,maxpoly,minpoly);

clip-to-ortho-plane

This routine clips the polygon according to one of the orthogonal
planes specified (X, Y, or Z) and returns the number of clipped
vertices.
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plural int clip..to-.ortho~.plane(n,src,si,sv,bad.side,dest)

plural int n; /* Number of vertices*/
plural float src[2*MAXVERTJC3); /* Input vertices *
plural int si; 1* Orthogonal Plane */
plural float sv; /* Equation of ortho plane*/
plural int bad-.side;
plural float dest C2*MAXVERTJ 3J; /* Clipped verts *

plural int clipped-.n - 0;
plural mnt i,k;
plural mnt side,net.side,
plural float t;

1* this is really part of the loop initialization *
it ((src~o][sil - sv) < -Li..NORM..MIN) side - -1;
else if ((srcCO][si) - sv) > Li..NORM_.MIN) side = 1;
else side - 0;

for (i - 0; i < n; +)

/* add the point if side is the correct side *
if (side != bad-.side){

if (clipped-.n >= 2*MAXVERT)

die("clip-.to-.ortho-.plane" ,"too many clipped verts" .1);
dest Cclipped-.nJ EX] - src Ci) CX] ;I
dest[clipped-.n)[Y CY srcCi) CY);
dest Cclipped-.n++) CZ] - srcCi) CZ];

I

/* now check to see if the edge has an intersection point *
k = ((i+i) == n ? 0 i1;
if ((src~k)Csi] sv) < -LiJJORM-MIN) next-.side = -1;
else if ((src~k)Csi) sv) > Li-.NORM-.MIN) next.side = 1;
else next~side - 0;

if (side !- 0 && next-.side !-0 && side !- next..side){
/* solve sv a t*(v2 - v1) + v1 *
/* and use the solution to compute the intersection *
t (sv - src~i) Csi)) / (src~k) Csi) - src~i) Csil);
if (clipped-.n =- 2*MAXVRT)

die("clipto-ortho..plane'l,"too many clipped verts",i);
dest~clipped.n) CX) - src~i] CX] + t*(src~k] CX) - src Ci] X]);
dest~clipped-.n] CY] -arc Ci) Y] + t*(src~k] CY) - src~i] CY));
dest~clipped-n++) CZ] - src~i] CZ) + t*(src~k] CZ] - src~i] CZ]);

I
side - next-.side;

144



return clipped-a;

clip-.face-to..box

This routine clips the polygon to the six extents specified in its
argument list and returns the clipped polygon vertices

plural int clip-face-to-box(xmin,zmax,yin,ymax,zmin,zmax,f,dest,orientat,.an,ex
plural float xmin,xmax,ymin,ymax,zmin, zmax;/* Clipping extents*/
plural Poly* plural f; /* Input Poly */
plural float dest[2*MAXVERT]C3]; /* Output verts *
plural mnt orientation; /* Polygon orientation*/
plural float ex[6]; /* Input Poly extents*/

plural mnt n;
plural float b C2*MAXVRT] [3];
plural. float v1[31 ,v2[3] ,norm[3];
plural mnt i,j,k;

if ((rn - f->n~umverts) > MAXVERT)
die("clip.face..to-.box",'too many verts in poly",l);

for (i - 0; i < n; i.+){
dest Li] LX] - f->ver-tsLi) LX];
destLi) LY] - f-)verts Li] LY);
dest Li] LZJ - f->vertsLi] LZ];

switch (orientation){

case Z: /* have to clip to xmin,xmax., ymin,ymax *

if (!n-clip..to.ortho-.plane(n,dest,(plural int)X,

return (plural int)0;
if !( aclip-.to..ortho-.plane(n,b, (plural int)X,
xmax,(plural int)1,dest)))
return (plural int)0;

if (!(n =clip..to-.ortho.plane(n,dest,(plural int)Y,
ymin,(plural int)(-1),b)))
return (plural int)0;
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if (!(n - clip-.to-.ortho.plane(n,b,(plural1 int)Y,

ymax,(plural int)1,dest)))
return (plural int)O0;

break;
case Y: /* have to clip to xman,zmax, zmin, zmax *

if (ex[MINY] > ymax 11 ex[MINY] < ymin) return 0;
if (!(n - clip-.to-ortho-.plane(n,dest,(plural int)X,

xmin, (plural int) (-1) ,b)))
return (plural int)0;

if (!(n = clip-.to-.ortho.plane(n,b,(plural int)X,
xmaz,(plural1 int)1,dest)))
return (plural int)0;

if (!(n - clip-toortho-plane(n,dest,(plural int)Z,
zmin, (plural int) (-1) ,b)))
return (plural1 int)O;

if (!(n -clip-.to-.ortho-plane(n,b,(plural int)Z,
zmax,(plural1 int)I.,dest)))
return (plural int)0;

break;
case X: 1* have to clip to ymin,ymax, zmin, zmax *

if (ex[MINX] > xmax 11I exCMINX] < xmin) return 0;
if (!(n - clip-.to-.ortho..plane(n,dest,(plural int)Y,
ymin, (plural int) (-1) ,b)))
return (plural int)O;

if (!(n - clip-.to-.ortho-.plane(n,b,(plural int)Y,
ymax, (plural1 int)1,dest)))
return (plural int)0;

if (!(a - clip-.to-.ortho-.plane(n,dest,(plural int)Z,
zmin, (plural1 int) (-1) ,b)))
return (plural int)0;

if (!(n = clip..to-.ortho..plane(n,b,(plural int)Z,
zmax,(plural int)l,dest)))
return (plural int)0;

break;
case SKEWX:
case SKEWY:
case SKEWZ:

if (!(n - clip-to-.ortho..plane(n,dest,(plural int)X,
xmi:,,(plural1 int) (-I),b)))
return (plural int)O;

if (!(n - clip-.to-.ortho-plane(n,b,(plural int)X,
xmax,(plural int)1,dest)))
return (plural int)0;

if (!(n a clip-.to-.orthoplan(n,dest,(plural int)Y,
ymin,(plural int)(-1),b)))
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return (plural int)O;
it (!(n = clip..to-ortho-plane(n,b,(plural int)Y,
ymax,(plural int)1,dest)))

return (plural int)O;
if (!(n =clip-to-ortho-.plane(n,dest,(plural int)Z,
zmin,(plural int)(-1),b)))
return (plural int)O;

if (!(n - clip-.to..orthoplane(,b,(plural1 int)Z,
zmax,(plural int)1,dest)))
return (plural int)O;

bre ak;

I

/* need to check that the clipped poly is not degenerate *
if (n > 2){

for (i = 0; i < n; i++){
j=(i+j.) % n;

k =(jp1) % n;

v1 [X] = dest Cj] [XI - dest Ci] [X];
viE'!] = dest~jj C'] - dest~i] CY);
v1 CZ] dest~jJ CZ) - dest Ci] CZ);

v2CX] - dest~k) CX] - dest~jj CX];
v2C'!] - dest~k] CY] - dest~j] C'!;
v2CZ] - dest~k] CZ] - dest~j] CZ];

normCX] - vjC'!)*v2CZ) - vlCZJ*v2CY];
norm[Y] - -vi CX]*v2[Z) + vi CZ]*v2CX];
normCZJ - vl[XJ*v2CY] - vZCY]*v2CX];

if (fp-.fabs (norm CX] )+fp-.f abs (norm[C'] ) +1 p-.fabs (norm CZJ) < LV..NORM-MIN)
return (plural int)0;

I
return n;

else return (plural int)0;

ref ine-.balance

This function improves on the load balancing achieved by the
rout ine balance 0. It does this by patchifying at a finer level the
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polygons on each processor. After this, the newly formed patches

are further rebalanced across all the processors representing a

room (a DPU row right now)

ref ine-balance()
{ float rowGrid[NYPROC];

int rown;
int rowPolyCount [NYPROC];
plural float gridSide[3]; /* Finer patchification grid */
plural int i, j, jj, k, 1, m; /* Misc counters */
plural Poly* plural tempPoly;
int n, r, q; /* Misc counters */

plural float ex[3*2]; /* Extents of the polygon */
plural float clipbox[3*2]; /* Clipping Box for patches*/

plural float normal[3]; /* Normals of the polygon */

plural int orientation;/* Axis to which the poly is mainly normal*/

plural int xO, xl, x2; /* Temporaries */
plural int xli, x2i, xidim, x2dim;

plural float wb[2*MAXVERT] 3]; /* Clipped vertices */
plural float new-verts [2*MAXVERT] [3];
plural Poly polyBuf; /* Temporary buffer for a poly*/

plural char polyBufvalid = 0;
int maxRowpoly; /* Max no of rows per poly */

/* Compute the max number of polys in a row */

r - 0;
for(n - 0; n < nyproc; n++)
{ if (iyproc -- n)

r = MAX(r,reduceAdd32(newPolyCount));
}

/* Compute the new patchification grid for each row */

for(n - 0; n < nyproc; n++)
{ if (iyproc s= n)

{ rowGridCn] f_ sqrt(f.floor(r*. 0/(MAX(. ,reduceAdd32(newPolyCount)))));

gridSide[X] - XCELLLENGTH/rowGrid[n]);
gridSide[Y] - YCELLLENGTH/rowGrid[n];
gridSideIZ3 - ZCELLLENGTH/rowGrid[n];
/* Clamp at 24 * 24 inch patches */

gridSide[X] = MAX(24.0,gridSide[X]);
gridSide[Y] - MAX(24.0,gridSide[Y]);
gridSide[Z] = MAX(24.0,gridSide[Z]);

}
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oldPoly = 0;
for(i = 0; i < newPolyCount; i++)

{tempPoly = new-poly-list + i
ex[MINEX(X) = ex[MINEX(Y)J = ex[MINEX(Z)J = HUGE;
exCMAXEX(X)] = exCMAXEX(Y)) = ex[MAXEX(Z)] = -HUGE;

/* Find the polgyon extents */

for(j = 0; j<tempPoly->numverts; j++)
{exLMINEX(X)J = MIN(exLMINEX(X)] ,tempPoly->verts[jJ LX]);

exEMINEX(Y)J - MIN(exLMINEX(Y)] ,tempPoly->verts Lj] Y]);
ex[MINEX(Z)] = MIN(exCMINEX(Z)] ,tempPoly->verts~j] [Z]);
exEMAXEX(X) = MAX(exLMAXEX(X)] ,tempPoly->verts~jJl~X]);
ex[MAXEX(Y)] = MAX(exfMAXEX(Y)] ,tempPoly->verts U] LY]);
exCMAXEX(Z)] = MAX(exLMAXEX(Z)] ,tempPoly->verts[j] EZI);

/* Find the orientation - ie the principal axis which is most nearl.y
normal to the polygon

normal LX] - fp-.f abs (tempPoly->eqCA]);
normalLY] - fp-.fabs(tempPoly->eqLB]);
normal[Z] - fp-.fabs(tempPoly->eqLC]);

if (normal Lx] > normal LY)
{if (normalLX] > normal[Z]) orientation = SKEWX;
else orientation - SKEWZ;

else

{if (normalLY] > normalLZ]) orientation = SKEWY;
else orientation - SKEWZ;

if ((normalLY] == )&k(normalLZ] r 0)) orientation = X

if ((normalEX] = 0)&&(normalLZJ 0)) orientation - Y;
if ((normal[Y] -u0)Ak(normal[X] r 0)) orientation - Z

switch (orientation)

{case X: case SKEWX: xi - Y; x2 - Z; xO = X; break;
case Y: case SKEWY: xI Z; x2 - X; xO = Y; break;
case Z: case SKEWZ: x1 - X; x2 - Y; 10 - Z; break;

/* Determine the clipping boxes required for patchifying the polygon *

xli = (plural int) (fp-.floor(ex LMINEX(xl)J/gridSide Lxi]));
x2i -(plural int) (fp-.floor(exLMINE.X(x2)3 /gridSide[x2]));
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x~di = plual it)(p-cil~x[MAEX~l)]gri~idexll) -x~8

xldim = (plural jut) (fp.ceil(ex[MAXEX(x2)]/gridSide~xl)) - xli;

clipboxCMINEX(xO)] = ex[MINEX(xO)];
clipbox[MAXEX(xO)] = ex[MAXEX(xO)];
clipbox[MINEX(xi)]= xli*gridSideCxi];
clipboxEMAXEX(xl)]= clipboxEMINEXxi)] + gridSide~xl];

1* Clip and write out the new finer patches from the polgyons *
for (1 = 0; 1 < xidim; 1++)

{clipboxEMINEX(x2)] - x2i*gridSide~x2];

clipboxCMAXEX(x2)] = clipboxCMINEX(x2)] + gridSide~x2];

for (j = 0; j < z2dim; j++)

{ if ((m - clip-.face-.to-bo(clipboxCMINX] ,clipboxEMAXX],
clipboxEMINYJ ,clipboxEMAXY],
clipbox[MINZ] ,c]ipbox[MAXZ),
tempPoly,wb,orientation,ex)) > 2)

{if (m <= 4)
write..patch(teinpPoly,wb ,m);

else
{write..patch(tempPoly,wb, (plural int)4);
if (m%2 1) k -m - 1;
else k m;
for (jj I ; jj <w (k-4)/2; jj++)
{for(r=0;r<3;r++)

{new-.verts [0] (r] - wb £0] Er);
new-.verts~l] Er] - wb[(jj*2)+1) Er];
new-.vert 9E2] Er] - vbEC Qj *2) +21 Er] ;
new-.verts [3] Er] - wbE(jj*2)+3] Er];

write-.patch(tempPoly,new.verts, (plural int)4);

if (m%2 -- 1)
{for(r=0;r<3;r++)
f new-..verts £0] [r] = wb EO] [r];

new-.ver-tsC1] Er] = wb(jj*2)+1] Er];
new-vez-ts £2] r] - vbE(jj*2)+2] Cr];

write..patchL(tempPoly,nev..verts, (plural int)3);

clipbox[MINEX(x2)] =clipbox[MAXEX(x2)];

clipbox[MAXEX(x2)] 4.gridSide~x2];
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clipboxCMINEX(xl)] = clipbox.EMAXEX(x1)];
clipboxEMAXEX(xl)] += gridSide~xl];

if (oldPoly > maxPEpoly)
{printf('Excessive Poly Counts after finer patchification\n");
p-.printf(' E.d,7.d]=%d ',ixproc,iyproc,oldPoly);

1* Now try and balance the number of patches across each row *

for(n = 0; nnyproc; n++)
{if (iyproc == n) rowPolyCount~n] - reduceAdd32(oldPoly);
rowPolyCount~n] 1= nxproc; /* Find the desired no of patches per proc ~

I

1* Start distributing patches to achieve the above no of patches per proc ~
1* within rowPolyCoiint~n]+1 is ok */
while (oldPoly > rowPolyCount~iyproc] + 1)
{tempPoly - old-.polylist + (--oldPoly);
for(n - 0; n<MAXVERT; n++)

for(r-0; r<3; r++)
polyBuf .verts En] Er] - tempPoly->verts En] Er];

for(r - 0; r<4; r++)
f polyBufE.eq~rJ - tempPoly->eq~rJ;

for(n =0; n<MAXVERT; n++)
polyBuf.colors~n] Er] - tempPoly->colors En] Er];

I
polyBuf numverts - tempPoly->numverts;
polyBuf.area = tempPoly->area;
polyBufvalid -1;

all for(q=0; q<nxproc ; q++)
{if (polyBufvalid)
f polyBufvalid - 0;

if (oldPoly <- rovPolyCount~iyproc])
{ tempPoly - old-.polylist + oldPoly++;

for(n a 0; n<MAXVERT; n++)
for(rno; r<3; r++)

tempPoly->verts~n] Er] =polyBuf.ver-ts~n] Er];
for(r =0; r<4; r++)

{tempPoly->eq Er] - polyBuf eq Er];
for(n = 0; n<MAXVERT; n++)



tempPoly->colors En] Er] = polyBuf .colors En] Er];

tempPoly->numverts = polyBuf.numverts;

tempPoly->area = polyBuf.area;

else
{ ss-xsend(0, 1,&polyBuf,&polyBuf,sizeof(Poly));
xnetE[1].polyBufvalid = (plural char)1;

}

/* Find the total and the maximum number of patches in a row
for (n-0; n<nyproc; n++)

if (iyproc == n) {
row-n - reduceAdd32(oldPoly);
printf("Total patches on row %d = %d\n",n,row-n);
maxRowpoly = MAX(maxRowpoly,row-n);

printf("max row patches = 7,d\n",maxRowpoly);

maxPEpoly = reduceMax32(oldPoly);
printf("max PE patches = %din",maxPEpoly);

write-patch

This patch is written onto the current processor if it has
enough memory space available. Else it is written to the nearest
processor that has space for it.

write.patch(poly, verts, numverts)

plural Poly* plural poly; /* Parent polygon */
plural float verts[2*MAXVERT] [3]; /* Patch vertices */
plural int numverts; /* No of patch vertices*/
{ plural Poly* plural tempPoly;
plural Poly polyBuf;
plural char polyBuf.valid = 0;
plural int i,j;

int n,r,q;
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plural float temp..area;

tempPoly =old-poly-list + oldPoly;

temp-area =area(verts, numverts);

if (oldPoly < ma-xPEpoly)
/* Write the patch on this proc if possible*/

{for(n = 0; n<MAXVERLT; n++)
for(r0O; r<3; r++)
tempPoly->verts[n] Cr] - ver-ts~n] Cr];

for(r = 0; r<4; r++)
{tempPoly->eq Cr] = poly->eq r];
for(n =0; n(MAXVERT; n++)

tempPoly->colors[n] Cr] = poly->colors~n] Cr];

tempPoly->numverts =numverts;
tempPoly->area = temp..area;
if(temp.area > 1.0) oldPoly++;

else 1* Not enough memory on this processor ~
if (temp-.area > 1.0)
{for(n = 0; n<MAXVERT; n++)

for(r0O; r<3; r++)
polyBuf . verts Cal Cr] = verts Cn] Cr];

for(r = 0; r<4; r++)
{polyBuf.eq~r] = poly->eq~r];
for(n = 0; n<M.AXVERT; n++)

polyBuf .colors Cn] Cr] - poly->colors Cn] r];

polyBuf.numverts - numverts;

polyBuf.area - temp-.area;

/* Spread to the nearest proc on the right that is still not fully filled*/
=ixproc;

ij + 1;

while ((i !-j) & (polyBufvalid))

{if (polyBufvalid)
{polyBufvalid - 0;
if(oldPoly < maxPEpoly)
{tempPoly - old-.polylist + oldPoly++;

for(n =0; n<MAXVERT; n++)
for(r=0O; r<3; r++)

tempPoly->verts~n] Er) = polyBuf .verts En] Cr];
for(r = 0; r<4; r++)

{tempPoly->eq~r] - polyBuf.eq~r];

153



for(n = 0; n<MAXVERT; n++)

tempPoly->colors~n] Er] = polyBuf.colors~nl Er];

tempPoly->numverts = polyBuf .nulmverts;
tempPoly->area =polyBuf.area;

I
else
{ss-xsend(0,1,&polyBuf,&polyBuf,sizeof(Poly));
xnetECi) .polyBufvalid =(plural char)1;

i =(i+1)Yniproc;

print-..poly

Print out the polygon tempPoly at processor(x,y) on the DPU.

print-.poly(x ,y,tempPoly)
plural int x;
plural int y;
plural Poly* plural tempPoly;
{if ((ixproc -- x)&k(iyproc -- y))

p-.printf("Poly at E/d,%dJ: \n X0 %f YO %f ZO Xf\n X1 Yf Yi %f Zi %/f\n X2 %~f
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